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Preface 
 
Evolutionary computation has been widely used in computer science for decades. Even 

though it started as far back as the 1960s with simulated evolution, the subject is still 
evolving. During this time, new metaheuristic optimization approaches, like evolutionary 
algorithms, genetic algorithms, swarm intelligence, etc., were being developed and new 
fields of usage in artificial intelligence, machine learning, combinatorial and numerical 
optimization, etc., were being explored. However, even with so much work done, novel 
research into new techniques and new areas of usage is far from over. This book presents 
some new theoretical as well as practical aspects of evolutionary computation. 

The first part of the book is mainly concentrated on evolutionary algorithms and their 
applications. First, the influence that diversity has on evolutionary algorithms will be 
described. There is also an insight into how to efficiently solve the constraint-satisfaction 
problem and how time series can be determined by the use of evolutionary forecasting. 
Quantum finite-state machines are becoming increasingly more important. Here, an 
evolutionary-based logic is used for its synthesis. With an ever increasing number of criteria 
being used to evaluate a solution, this is leading to different multi-objective evolutionary 
approaches. Such approaches are being applied to control optimization and phylogenetic 
reconstruction. It is well known that evolutionary-computation approaches are mostly bio-
inspired. So it is interesting to see how they can return to its origin by solving bio-problems. 
Here, they are used for predicting membrane protein-protein interactions and are applied to 
different bioinformatics applications.  

The second part of the book presents some other well-known evolutionary approaches, 
like genetic algorithms, genetic programming, estimations of the distribution algorithm, and 
swarm intelligence. Genetic algorithms are used in Q-learning to develop a compact control 
table, while flight-control system design is being optimized by genetic programming. A new 
estimation of the distribution algorithm, using the empirical selection distribution, is being 
presented and, on the other hand, a classical version is being applied to the video-tracking 
system problem. The book ends with the recently very popular swarm-intelligence 
approaches, where they are used in artificial societies, social simulations, and applied to the 
Chinese traveling-salesman problem. 

This book will be of great value to undergraduates, graduate students, researchers in 
computer science, and anyone else with an interest in learning about the latest 
developments in evolutionary computation. 

Editor 

Peter Korosec 
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Diversity-Based Adaptive 
Evolutionary Algorithms 

Maury Meirelles Gouvêa Jr. and Aluizio Fausto Ribeiro Araújo 
Pontifical Catholic University of Minas Gerais 

Federal University of Pernambuco 
Brazil 

1. Introduction 
In evolutionary algorithms (EAs), preserving the diversity of the population, or minimizing 
its loss, may benefit the evolutionary process in several ways, such as, by preventing 
premature convergence, by allocating the population in distinct Pareto optimal solutions in 
a multi objective problem, and by permitting fast adaptation in dynamic problems. 
Premature convergence may lead the EA to a non-optimal result, that is, converging to a 
local optimum. In static problems, standard EAs work well. However, many real world 
problems are dynamic or other uncertainties have to be taken into account, such as noise 
and fitness approximation. In dynamic problems, the preservation of diversity is a crucial 
issue because EAs need to explore the largest number of regions possible. Standard genetic 
algorithms (SGA) are not suitable for solving dynamic problems because their population 
quickly converges to a specific region of the solution space. 
 The loss of diversity is caused by selection pressure and genetic drift, two factors inherent 
in EAs. The loss of diversity may lead the EA to a non-optimal result, despite the fact that 
after a period of time, EA tends to find the global optimum. In static problems, loss of 
diversity might not be a very critical problem. However in dynamic environments lack of 
diversity may degrade EA performance. Especially in dynamic problems, the preservation 
of diversity is a crucial issue because an EA needs to explore the search space aggressively. 
One option for reacting to a change of the environment is to consider each change as the 
arrival of a new optimization problem to be solved. This is a viable alternative if there is 
time available to solve the problem. However, the time available for finding the new 
optimum may be short and also sometimes the algorithm cannot identify the environmental 
change. When the new optimum is close to the old one, the search can be restricted to the 
neighborhood of the previous optimum. Thus, some knowledge about the previous search 
space can be used. However, reusing information from the past may not be promising 
depending on the nature of the change. If the change is large or unpredictable, restarting the 
search may be the only viable option. 
The approaches that handle dynamic environments, addressing the issue of convergence, 
can be divided into the following categories (Jin & Branke, 2005): (i) generating diversity 
after a change, (ii) preserving diversity throughout the run, (iii) memory-based approaches, 
and (iv) multi-population approaches. The first two approaches cover the diversity problem. 
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In (i), an EA runs in standard way, but when a change is detected, some actions are taken to 
increase diversity. In (ii), convergence is avoided all the time and it is expected that a more 
dispersive population can adapt to changes. In (iii), EA is supplied with a memory so as to 
be able to recall useful information from past generations. In (iv), the population is divided 
into several subpopulations allowing different peaks in the environment to be tracked. 
The preservation of diversity has advantages that can be supported by theory, such as those 
cited above, and from Nature. The loss of diversity because of the extinction of species may 
produce irreversible ecological disturbance for an ecosystem. A high diversity level 
produces abilities which allow populations or species to react against adversities, such as 
diseases, parasites, and predators. An appropriate level of diversity allows populations or 
species to adapt to environmental changes. On the other hand, a low diversity level tends to 
limit these abilities (Amos & Harwood, 1998). From the point of view of the evolutionary 
process, the loss of diversity also represents serious problems, such as population 
convergence to a specific region of the solutions space; thus, EA losses its main feature, the 
global search. In order to preserve the diversity of the population it is necessary to create 
strategies to adjust one or more EA parameters, such as the mutation rate, selection 
pressure, etc. These strategies are known as diversity-based algorithms. 
This chapter presents a survey on diversity-based evolutionary algorithms. Two classes of 
models are presented: one to minimize the loss of diversity and another to control 
population diversity based on the desired diversity range or level. Several methods to 
measure the diversity of the population and the species are presented as a foundation for 
diversity control methods. The rest of this paper is organized as follows. Section 2 presents 
parameter setting and control in EAs. Section 3 describes several methods for measuring 
diversity. Section 4 presents methods to preserve and control population diversity in 
evolutionary algorithms. Finally, Section 5 concludes this chapter. 

2. Parameter tuning and control in evolutionary computation 
The EA parameters can affect population diversity directly. For instance, a larger mutation 
rate causes disturbances in the offspring and, consequently, increases the diversity of the 
population in the next generation. On the other hand, the greater the selection pressure is, 
the fittest individuals tend to survive or generate more offspring. Thus, these individuals 
tend to be genetically similar, thus decreasing the diversity of the population. 
We can set parameter values by parameter tuning and parameter control (Angeline, 1995; 
Eiben et al., 1999; Hinterding et al., 1997). Parameter tuning finds appropriate values for the 
parameters before the algorithm is used, and these parameters are fixed during the run. For 
example, Bäck & Schutz (1996) suggest the following mutation probability 

 
LN

pm
75.1

= , (1) 

 

where N is the population size and L is the individual length. 
Parameter control changes parameter values on-line in accordance with three categories 
(Eiben et al., 1999; Hinterding et al., 1997): deterministic, adaptive, and self-adaptive control 
methods. The next three subsections present these categories. 
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2.1 Deterministic control methods 
Deterministic techniques in which the control rule is triggered when a number of 
generations has elapsed since the last time the rule was activated. For example (Hinterding 
et al., 1997), the mutation rate may be defined as 

 
K
kkpm 3.05.0)( −= , (2) 

where k is the current generation and K is the maximum number of generations. This 
strategy aims to produce high exploration in the beginning of the evolutionary process as a 
way to seek out promising regions in the solutions space. During the evolutionary process, 
the mutation rate decreases in order to benefit the exploration continuously. Thus, the 
diversity of the population tends to decrease throughout the evolutionary process. 

2.2 Adaptive control methods 
Adaptive techniques consider that the assignment of parameter values is associated with 
feedback from the evolutionary process. For example, the mutation rate may be defined as 
in (Srinivas & Patnaik, 1994) 

 
)()(*

)(
kfkf

Akpm
−

= , (3) 

where f* is the fitness of the best individual, f is the mean fitness of the population, and A is 
a constant. This strategy increases the mutation rate as the mean fitness of the population 
approximates to the best fitness of the population. The objective is to avoid the convergence 
of the whole population to a specific region of the solutions space. This interaction with the 
environment by adaptive control methods may be an advantage over deterministic methods 
because the former may overcome some problems during the evolutionary process, such as 
local optimum convergence. In dynamic problems, even if the population is located around 
the global optimum, when the environment changes, it is almost always necessary to spread 
the population. Using Equation (2), it is not possible to modify the mutation rate based on 
the environmental change. With adaptive methods, if the algorithm has a mechanism to 
detect the environment change, the mutation rate can be increased. On the other hand, 
adaptive methods require more computational effort than deterministic methods. 

2.3 Self-adaptive control methods 
Self-adaptive techniques encode the parameters in the chromosomes and undergo EA 
operators. For instance (Eiben et al., 1999), the representation of the i-th individual gi becomes 

[gi1, …, giL, pm ], 
in which both the solution vector and mutation probability undergo the evolutionary 
process. The self-adaptive methods use the evolution principle on the EA parameters, which 
are modified and undergo the whole evolutionary process – selection, crossover, and 
mutation. For instance, an individual with L genes in the standard evolutionary algorithm 
will have L+1 genes in a self-adaptive method, where the extra gene is an evolutionary 
factor parameter, such as the mutation rate, crossover rate, type of crossover operator, and 
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so forth. The advantage of this strategy over the other control parameter methods is that the 
parameters are modified by the effects of evolutions, and tend to persist at all parameter 
values that produce better individuals. Another benefit of this strategy is its low 
computational effort because only few genes are added into the individuals, and no extra 
computation is necessary. The disadvantage of the self-adaptive strategy occurs especially in 
a dynamic environment where the changes in the environment may not be detected or are 
detected late. Self-adaptive methods may not be able to avoid premature convergence in the 
local optimum because, normally, they do not have a direct way to detect it. 

3. Diversity measurement 
In order to preserve and, especially, to control population diversity it is necessary to 
measure it. This section presents some of the measurement methods proposed by several 
authors (Rao, 1982; Weitzman, 1992; Solow et al., 1993; Champely & Chessel, 2002; Ursem et 
al., 2002; Wineberg & Oppacher, 2003; Simpson, 2004). Rao (1982) created a diversity 
function based on the probability distribution of a finite set of species. His diversity function 
uses the distance d(s1, s2) between two species s1 and s2 defined over a finite set of species, as 
follows 

 
1 1

( , )
S Sn n

i j i j
i j

p p d s s
= =

Γ = ∑∑ , (4) 

where nS is the number of species and pi = P(X = si). 
Weitzman (1992) created a recursive method to compute diversity, as follows 

 SsSsdsSS iii
Ssi

∈∀+−Γ=Γ
∈

),()(max)( , (5) 

in which there is a unique solution whether if the condition Γ(si) = d0 is considered, where  
d0 ≥ 0 is a constant. 
Solow et al. (1993) proposed a function, named the preservation measure, to calculate the 
loss of diversity when a species si becomes extinct, as follows 

 ( , )
i

i
s S

d s S
∉

ΔΓ = − ∑ . (6) 

Based on Rao (1982), Champely and Chessel (2002) introduced a function for diversity using 
the Euclidean distance between species, defined as 

 
2

1 1

1 ( , )
2

S Sn n

i j i j
i j

p p d s s
= =

⎡ ⎤Γ = ⎣ ⎦∑∑ . (7) 

Simpson (2004) created a heterozygosity-based diversity function, He. When He is replaced 
with Γ, Simpson´s diversity function becomes 

 ( )2
1

1
an

i
i

p
=

Γ = − ∑ , (8) 
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where pi is the occurrence rate of the i-th allele, individual, or species from the set S, and na 
is the number of alleles, individuals, or species. 
In evolutionary computation, normally, the methods that measure population diversity use 
two different types of models: one as a function of the distance between individuals 
(Wineberg & Oppacher, 2003) and another as a function of the distance from the individuals 
to a reference (Ursem et al., 2002), e.g., the population mean point. 
Diversity as a function of the distance between all individuals can be measured as follows 

 
1

1 1
( , )

N i

i j
i j

d g g
−

= =

Γ = ∑ ∑ , (9) 

where d(gi, gj) is the distance (e.g., Euclidean or Hamming) between individuals gi and gj. 
The diversity from Equation (9), with complexity O(L, N2), has the disadvantage of requiring 
a large computational effort. 
Wineberg & Oppacher (2003) proposed a smaller computational effort than Equation (9), 
with complexity O(L, N), based on allele frequencies, as follows 

 
2

1
( ) 1 ( )

2

L

i i
i A

N f f
L α

α α
= ∀ ∈

Γ = −⎡ ⎤⎣ ⎦∑ ∑ , (10) 

where A is the set of alleles, 

 ( )( ) i
i

cf
N
αα = , (11) 

is the frequency in which the allele α occurs in the i-th gene of the individuals in the 
population, 

 
1

( ) ( )
N

i ji
j

c α δ α
=

= ∑ , (12) 

is the number of occurrences of α and δji(α) is the delta of Kronecker, which becomes 1 if the 
gene in locus i in chromosome j is equal to α; or 0, otherwise. 
Ursem et al. (2002) proposed a model as a function of a reference point in the solutions 
space, which requires a smaller computational effort and complexity O(L, N). This diversity 
model shows the population distribution with respect to the population mean point 
calculated as follows 

 ( )2
1 1

1 N L

ij j
i j

g g
DN = =

Γ = −∑ ∑ , (13) 

where D is the solutions space diagonal, D ⊂ ℜL, gij is the j-th gene of the i-th individual, g is 
the j-th gene of the population mean point, g , where 

 
1

1 N

j ij
i

g g
N =

= ∑ . (14) 
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The diversity between species and population diversity have different characteristics. In the 
former, the species are always different, whereas in the latter, two individuals may be 
genetically equal. In the diversity of species, a new individual added to a set S increases its 
diversity. In populations, a new individual may increase or decrease diversity. 

4. Diversity preservation and control 
The parameter control methods that aim to preserve diversity can be divided into two 
classes: diversity preservation and diversity control. The diversity preservation methods use 
strategies that minimize the loss of diversity (Bui et al., 2005; Herrera et al., 2000; Simões & 
Costa, 2002a; Wong et al., 2003). The diversity control methods have a value or range of 
desired diversity (Meiyi et al., 2004; Nguyen & Wong, 2003; Ursem et al., 2002). Thus, 
diversity control strategies aim to minimize the difference between the population and the 
diversities desired. The next two subsections present some important diversity preservation 
and control methods in evolutionary computation. 

4.1 Diversity preservation 
Most methods that deal with population diversity try to avoid loss of diversity without 
setting a desired value or range. Cobb (1990) created the trigged hypermutation (THM) 
method that set the mutation probability to a high value (hypermutation) during periods 
where the time-averaged best performance of the EA worsens; otherwise, the EA maintains 
a low level of mutation. THM permits the EA to accommodate changes in the environment, 
while also permitting the EA to perform optimization during periods of environmental 
stationariness. 
Simões & Costa (2001) created a biologically inspired genetic operator called transformation. 
The computational mechanism is inspired by the biological process and consists of the 
capacity of the individuals to absorb fragments of DNA (desoxirribonucleic acid) from the 
environment. These gene segments are then reintegrated in the individual genome. Simões 
& Costa incorporated transformation into the standard evolutionary algorithm as a new 
genetic operator that replaces crossover. The pseudo-code of this modified EA is described 
in Figure 1. 
 

  k ← 0 
  Generate P(k) 
  Evaluate P(k) 
  Generate initial gene segment pool 
  while( NOT stop condition ) 
  { 
 Select S(k) from P(k)  
 Transform S(k)  
 Evaluate S(k) 
 P(k+1) ← S(k) 
 Generate new gene segment pool  
 k ← k + 1 
  } 

Fig. 1. Transformation-based GA (TGA) 
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The foreign DNA fragments, consisting of binary strings of different lengths, will form a 
gene segment pool and will be used to transform the individuals of the population. In each 
generation k, a sub-population S(k) is selected to be transformed by the pool of gene 
segments. The segment pool is changed using the old population to create part of the new 
segments with those remaining being created at random. In the transformation mechanism 
there is no sexual reproduction among the individuals. To transform an individual the 
following steps are conducted: select a segment from the segment pool and randomly 
choose a point of transformation in the selected individual. The segment is incorporated in 
the genome of the individual. This corresponds to the biological process where the gene 
segments when integrated in the DNA cell recipient, replace some genes in its chromosome. 
Wong et al. (2003) created a method to adjust the crossover, pc, and mutation probability, 
pm, in order to promote a trade-off for exploration and exploitation. The evolutionary 
process is divided into two phases: the first uses pc and pm with values at random; the 
second adjusts pc and pm according to the fitness enhancements from the first phase. The 
diversity of the population is maintained by appending a “diversity fitness” into the original 
individual fitness. Thus, population diversity contributes to survivor selection as a weighted 
form, that is, there is a weight to balance the original fitness and the diversity fitness. 
Shimodaira (2001) designed a method to preserve diversity, called the diversity control-
oriented genetic algorithm (DCGA). First, the population is paired, each one is recombined 
and their offspring are mutated. After that, the offspring and current population are 
merged. Then, the survivor selection is made from the remaining population in accordance 
with the following roles: 
1. Duplicate structures in M(t) are eliminated and M’(t) is formed. Duplicate structures 

mean that they have identical entire structures; 
2. Structures are selected by using the Cross-generational Probabilistic Survival Selection 

(CPSS) method, and P(t) is formed from the structure with the best  fitness value in 
M’(t) and the selected structures. In the CPSS method, structures are selected by using 
uniform random numbers on the basis of a selection probability defined by the 
following equation: 

 
α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= c

L
Hcp i

s )1( , (15) 

where Hi is the Hamming distance between a candidate structure and the structure with 
the best fitness value, L is the length of the entire string representing the structure, c is 
the shape coefficient the value of which is in the range of [0.0, 1.0], and α is the 
exponent. In the selection process, a uniform random number in the range of [0.0, 1.0] is 
generated for each structure. 

3. If the number of the structures selected in Role 2 is smaller than N; then new structures 
randomly generated as in the initial population are introduced by the difference of the 
numbers. 

DCGA has an empirical and theoretical justification for avoiding premature convergence. 
The duplicated offspring decrease the population diversity. Thus, the crossover and large 
mutation probability tend to produce offspring that are as different as possible from their 
parents, and that explore regions of the solutions space that have not been explored. The 
selection pressure and population diversity should be externally controlled independently 
of the condition of the population, because the algorithm cannot recognize if the population 
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is in a local or global optimum. If the selection pressure is high, the best individuals near the 
best one tend to rise and survive in larger numbers, thus causing premature convergence. 
Shimodaira tried to solve this problem by reducing appropriately the selection pressure in 
the neighborhood of the best individual to eliminate individuals similar to it. Equation (15) 
creates a bias between the elimination of individuals with the smallest Hamming distance to 
the best individual and the selection of individuals with the greatest Hamming distance to 
the best individual. The greater this bias is, the greater the diversity of the population is. 
Grefenstette (1992) proposed an approach based on the flow of population immigrants over 
generations, called the random immigrants genetic algorithm (RIGA). This approach 
maintains a population diversity level by replacing some individuals from the current 
population by random individuals, called random immigrants, in every generation. There 
are two ways that define how individuals are replaced: replacing individuals at random or 
replacing the worst ones (Vavak et al., 1996). RIGA inserts random individuals into the 
population, a strategy that may increase population diversity and benefit the performance of 
the GA in dynamic environments. Figure 2 shows the pseudo-code of the RIGA. 
 

  k ← 0 
  Generate P(k) 
  Evaluate P(k) 
  while( NOT stop condition) 
  { 
 Generate a sub-population Sri(k) of nri random immigrants 
 Evaluate Sri(k) 
 Replace the worst individuals of P(k) with Sri(k) 
 P'(k) ← select( P(k) ) 
 Q(k) ← recombine( P'(k) ) 
 Mutate Q(k) 
 Evaluate Q(k) 
 P(k+1) ← Q(k) 
 k ← k + 1 
  } 

Fig. 2. Random immigrants GA (RIGA) 

4.2 Diversity control 
The control aims to keep the process output within prescribed limits (Narendra & 
Annaswamy, 2005). Figure 3 shows a simple control model. The objective of the control may 
be stated as the determination of the process input, u, to keep the error between a desired 
output, Γm, and the process output, Γ, within a pre-determined interval. If Γm is constant, the 
problem is called regulation around this value – also known as a set point. If Γm is a function 
of time, the problem is referred as tracking. When the characteristics of the process are 
known, the aim becomes to determine a control strategy to stabilize the feedback loop in 
Figure 3 around Γm. Otherwise, when the characteristics of the process are unknown, both 
regulation and tracking can be viewed as an adaptive control problem. 
Diversity control methods have a level or range of desired diversity. Thus, it is possible to 
define a control strategy based on a desired diversity. Ursem et al. (2002) created the 
diversity-guided evolutionary algorithm (DGEA) with two evolutionary modes: 
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Fig. 3. The simple control scheme 

exploitation and exploration. The former applies selection and recombination operators, 
which tend to decrease population diversity, while the diversity is above a limit dlow. When 
the population diversity drops below dlow, DGEA switches to an exploration mode that 
applies only the mutation operator, which tends to increase the diversity, until a diversity of 
dhigh is reached. Ursem et al. used Equation (13) to measure the diversity of the population. 
Both evolutionary modes, exploitation and exploration, change from one to the other in the 
evolutionary process as a function of the diversity range. Figure 4 shows the pseudo-code of 
the DGEA. 
 

k ← 0 
Generate P(k) 
Evaluate P(k) 
mode ← 'exploit' 
while( NOT stop condiction ) 
{ 
 if(  diversity( P(k) ) < dlow ) 
     mode ← 'explore' 
 else if(  diversity( P(k) ) > dhigh ) 
     mode ← 'exploit'   
  
 if( mode = 'exploit' )  
     P'(k) ← select( P(k) ) 
     Q(k) ← recombine( P'(k) ) 
 else  
     Q(k) ← mutate( P(k) ) 
  
 Evaluate Q(k) 
 P(k+1) ← Q(k) 
 k ← k + 1 
} 

Fig. 4. Diversity-guided evolutionary algorithm (DGEA) 
An important issue is to apply a mutation operator that rather quickly increases the distance 
to the population mean point. Otherwise, the algorithm will stay in exploration mode for a 
long time. An advantage for a mutation operator is to use the population mean average 
point to calculate the direction of each individual mutation. A disadvantage of the DGEA is 
its non-use of selection, recombination, and mutation together, which is the fundamental 
principle of EA. 
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Nguyen & Wong (2003) used control theory to adjust the mutation rate in unimodal space. 
The desired diversity, in generation k, was defined as follows 

 ( ) (0) exp( )d k kτΓ = Γ − , (16) 

where Γ(0) is the initial diversity and τ > 0 is a constant. Nguyen & Wong model is 
motivated by the observation that for unimodal search, convergence implies a 
corresponding reduction in the population diversity and that an exponential convergence 
rate would need to be accompanied by an exponential reduction of diversity. Nguyen & 
Wong adopted a diversity measurement based on the radial deviation from the population 
mean point. 
In Nguyen & Wong method, when the current population diversity deviates from the 
diversity desired, Γd, the mutation rate is adjusted as a control problem (Ogata, 1998), as 
follows 

 ( )( 1) ( )exp
( )m m
e kp k p k
e k

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠�
, (17) 

where e(k) is the deviation or error between the current and desired diversities, )(~ ke is the 
square mean error defined as 

 2 2 2( ) (1) (2) ( )e k e e e k= + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦� … . (18) 

From the work of Beyer & Rudolph (1997), Nguyen & Wong hypothesized that EAs can be 
induced to have linear order convergence for unimodal search if the population diversity 
can be controlled so as to decrease at a matching exponential rate. 
We created an adaptive EA named diversity-reference adaptive control (DRAC) (Gouvêa Jr. 
& Araújo, 2007). Our approach was based on the model-reference adaptive system (MRAS), 
an adaptive controller in which the desired performance of a particular process is 
determined by a model-reference (Astrom & Wittenmark, 1995; Wagg, 2003). The implicit 
assumption is that the designer is sufficiently familiar with the system under consideration. 
When a suitable choice is made of the structure and parameters of the model-reference, the 
desired response can be specified in terms of the model output. 
In MRAS, the model and process output are compared and the difference is used to yield 
the control signal. The system holds two feedback loops: the first loop, an ordinary piece of 
feedback, comprises the process and controller; and the second changes the controller 
parameter. Given one process, with an input-output pair { u, Γ }, and one model-reference, 
with an input-output pair { uc , Γm }, the aim is to determine the control input u(t), for all 
t ≥ t0, so that 

 0)()(lim =Γ−Γ
∞→

ttm
t

. (19) 

Parameter updating is based on feedback from the error. Two widely used methods to yield 
the control signal using MRAS are (Astrom & Wittenmark, 1995): the MIT rule and the 
stable adaptation law derived from Lyapunov stability theory. 
The MIT rule begins by defining the tracking error, e, which represents the difference 
between the process output and the model-reference output, as follows 
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 )()()( ttte m Γ−Γ= , (20) 

where Γm(t) and Γ(t) are the model-reference and process output, respectively, at time t. 
From this error, a cost function, J(θ), is formed, where θ is the controller parameter that will 
be adapted. A typical cost function is 

 [ ]2)(
2
1)( teJ =θ . (21) 

If the goal is to minimize this cost related to the error, the parameter θ can be changed in 
accordance with the negative gradient of J, then 

 
θ

η
θ

ηθ
∂
∂

−=
∂
∂

−=
eeJ

dt
d , (22) 

where η ∈ [0, 1] is the step length of the θ adjustment. The partial derivative ∂e/∂θ, the 
sensitivity of the system, establishes how the error is influenced by the adjustable 
parameter. 
Thus, the process output has to track the model-reference output. The block diagram of 
DRAC, Figure 5, has a block called process comprising the evolutionary process and the 
diversity evaluator so as to determine the current diversity of the population. The controller 
sends the control signal, u, to the process as a function of the command signal, uc, and the 
parameter, θ. The updating of θ is based on the error between the process and model-
reference output. The model-reference, as a whole, represents a behaviour to be tracked by 
the population diversity. 
DRAC computes the population diversity based on Equation (8) as a function of the allele 
occurrence rate for a given gene. In real-coded EA, the number of alleles is calculated by 
separating the gene length into defined intervals, i.e., the number of alleles, na, is the number 
of intervals. Thus, the allele that belongs to a given interval j is regarded as allele gij, i.e., 
allele j from the gene i. 
In DRAC, the model-reference represents a crucial feature of behaviour to be tracked by the 
evolutionary process. Note that while the evolutionary process aims to determine the 
optimal solution, the control system regulates the population diversity to track the model-
reference. The model-reference is expressed by 

 )),(),(()1( kkukk cmm ΓΨ=+Γ . (23) 

where Ψ(.) is a non-linear function, Γm is the model-reference output, and uc is the command 
signal (i.e., the model input). 
From the Hardy-Wimberg model (Hardy, 1908; Weinberg, 1908), it is possible to assume 
that there is no evolution without loss of diversity. Regarding this premise, a general model-
reference should consider two hypotheses: (i) during the evolutionary process, diversity 
decreases, and (ii) there is a minimum diversity level to maintain a balance between 
exploitation and exploration. Thus, after each change in the environment, Γm goes from its 
current value to Γ(0), to increase exploration. 
DRAC proposes a model-reference that decreases its diversity limited by a determined 
minimum value. This model also forces a strong growth in diversity after changes in the 
environment. The modifications to the environment are detected by the decrease of the best  
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Fig. 5. Block diagram of the DRAC method for EA parameter control 

individual. Our model reference is based on heterozygosity dynamics, from an ideal 
Wright-Fisher population (Wright, 1931; Fisher, 1930), as follows 

 1( 1) ( ) 1
2m m

e
k k

N
⎛ ⎞

Γ + = Γ −⎜ ⎟⎜ ⎟
⎝ ⎠

, (24) 

where Ne is the effective population size, i.e., the size of the ideal Wright-Fisher population. 
The command signal, uc, is the effective population size, Ne,, Γm(0) is the initial population 
diversity, Γm(0) = Γ(0), and a minimum diversity value must be defined to avoid zero 
diversity. 
DRAC modifies the selection mechanism, which is conducted in three stages as follows: 
1. Selection of the individual with best fitness to assure that the best solution survives to 

the next generation. 
2. Selection of αN individuals based on a standard selection (e.g., roulette wheel or 

tournament). 
3. Selection of (1 – α)N – 1 individuals based on their distances from an individual to the 

population mean point, g , so as to preserve diversity. This individual fitness is based 
on the distance, di, weighted by the selection pressure, becoming 

 )exp(1)(' iii ddf β−−= , (25) 

where β > 0 is the selection pressure. The lower di is, the lower is the fitness, f'i( . , .). 
Thus, an individual far from g  is more likely to be selected, thus, preserving the 
diversity. The selection pressure, β, regulates the influence of the distance di upon the 
selection mechanism, i.e., the larger β is,, the higher the influence of the individual 
distance di is upon the selection, and the higher the diversity in the next generation is. 
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In DRAC, the selection pressure is the control signal, i.e., uc = β, and its parameter θ is 
adjusted as a function of the error between the current, Γ, and model-reference diversity, Γm. 
DRAC model proposes a control signal as a function of the command signal and the 
controller parameter. The control law is defined as 

 )()()( kukku cθ= , (26) 

The method employed to adjust θ is a particular case of the MIT rule. The parameter θ is 
updated as a function of the error between the process and model-reference output. The 
discrete version of the adjustment of θ is defined as an approximation of Equation (22), as 
follows 

 )(')()1( kekk ηθθ −=+ , (27) 

where η’ = η ∂e/∂θ, η’ > 0, is a constant. This adjustment rule gives no guarantee that the 
adaptive controller makes the error vanish. Figure 6 shows the DRAC pseudo-code. 
 

  k ← 0 
  Generate P(k) 
  Evaluate P(k) 
  Γ(k) ← diversity( P(k) ) 
 
  while (NOT stop condiction ) 
  { 
     Select P’(k) from P(k) 
     Q(k) ← recombine( P(k) ) 
     Mutate Q(k) 
     Evaluate Q(k) 
     Associate P(k) and Q(k) 
     Γm(k) ← model-reference( k ) 
     Adjust θ(k+1) as a function of the error, e(k) = Γm(k) – Γ(k) 
     Select the survivors S(k): 
 1. Select the best individual 
 2. Select αN individuals by tournament 
 3. Select the rest to the next population 
     P(k+1) ← S(k) 
     Γ(k+1) ← diversity( P(k+1) ) 
     k ← k+1 
  } 

Fig. 6. Diversity-reference adaptive control (DRAC) 

5. Conclusion 
This paper presented a survey about diversity-based evolutionary algorithms. Two sets of 
models were presented, one to minimize the diversity loss and another to control the 
population diversity based on a desired diversity range or level. The problem of the 
inappropriate level of diversity with respect to the environment and its dynamic can be 
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avoided or reduced if the population diversity is controlled. For example, DRAC controls 
population diversity, which tracks a model-reference. The method provides a model-
reference of diversity that decreases according to a control law and increases after the 
environment changes. In DRAC, the evolutionary process is handled as a control problem, 
and MRAS is used to adjust the control signal.  
The model-reference, tracked by the population in DRAC, is based upon principles: (i) from 
the Hardy-Weinberg theory that, in a population, it is necessary for diversity to decrease in 
order that there is evolution; and (ii) it is necessary to have a minimum level of diversity in 
order to benefit exploitation. The diversity control method proposed can accelerate the 
speed at which the algorithm reaches promising regions in a dynamic environment. 
DRAC reveals several possibilities, such as adjusting the model-reference as a function of 
the environment and its dynamic, especially for small-sized and chaotic dynamics. Another 
possibility is to use other EA parameters as the control signal, such as mutation and 
crossover probabilities, the number of individuals selected for crossover, and the number of 
individuals selected in Stage 3 of the proposed selection mechanism. These parameters have 
a significant influence on population diversity and the evolutionary process, and they can be 
investigated and compared with pressure-based selection. 
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1. Introduction 
Many difficult computational problems from different application areas can be seen as 
constraint satisfaction problems (CSPs). Therefore, constraint satisfaction plays an important 
role in both theoretical and applied computer science. 
Constraint satisfaction deals essentially with finding a best practical solution under a list of 
constraints and priorities. Many methods, ranging from complete and systematic algorithms 
to stochastic and incomplete ones, were designed to solve CSPs. The complete and 
systematic methods are guaranteed to solve the problems but usually perform a great 
amount of constraint checks, being effective only for simple problems. Most of these 
algorithms are derived from the traditional backtracking scheme. Incomplete and stochastic 
algorithms sometimes solve difficult problems much faster; however, they are not 
guaranteed to solve the problem even if given unbounded amount of time and space. 
Because most of the real-world problems are over-constrained and do not have an exact 
solution, stochastic search is preferable to deterministic methods. In this light, techniques 
based on meta-heuristics have received considerable interest; among them, population-
based algorithms inspired by the Darwinian evolution or by the collective behavior of 
decentralized, self-organized systems, were successfully used in the field of constraint 
satisfaction. 
This chapter presents some of the most efficient evolutionary methods designed for solving 
constraint satisfaction problems and investigates the development of novel hybrid 
algorithms derived from Constraint Satisfaction specific techniques and Evolutionary 
Computation paradigms. These approaches make use of evolutionary computation methods 
for search assisted by an inference algorithm. Comparative studies highlight the differences 
between stochastic population-based methods and the systematic search performed by a 
Branch and Bound algorithm. 

2. Constraint satisfaction 
A Constraint Satisfaction Problem (CSP) is defined by a set of variables X = {X1, . . . ,Xn}, 
associated with a set of discrete-valued domains, D = {D1, . . . ,Dn}, and a set of constraints C 
= {C1, . . . ,Cm}. Each constraint Ci is a pair (Si,Ri), where Ri is a relation Ri ⊆ DSi defined on a 
subset of variables Si ⊆ X called the scope of Ci. The relation denotes all compatible tuples of 
DSi allowed by the constraint. 
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A solution is an assignment of values to variables x = (x1, . . . , xn), xi ∈ Di, such that each 
constraint is satisfied. If a solution is found, then the problem is named satisfiable or 
consistent. Finding a solution to CSP is a NP-complete task. 
However, the problem may ask for one solution, all solutions, or - when a solution does not 
exist - a partial solution that optimizes some criteria is desired. Our discussion will focus on 
the last case, that is, the Max-CSP problem. The task consists in finding an assignment that 
satisfies a maximum number of constraints. For this problem the relation Ri is given as a cost 
function Ci(Xi1 = xi1, . . . ,Xik = xik) = 0 if (xi1, . . . , xik) ∈ Ri and 1 otherwise. Using this 
formulation, an inconsistent CSP can be transformed into a consistent optimization problem. 
There are two major approaches to solve constraint satisfaction problems: search algorithms 
and inference techniques (Dechter, 2003). Search algorithms usually seek for a solution in 
the space of partial instantiations. Because the hybrid methods presented in this chapter 
make use of inference techniques, we present next an introduction to directional consistency 
algorithms. 

2.1 Inference: directional consistency 
Inference is the process of creating equivalent problems through problem reformulation. 
The variable domains are shrunk or new constraints are deduced from existing ones making 
the problem easier to solve with search algorithms. Occasionally, inference methods can 
even deliver a solution or prove the inconsistency of the problem without the need for any 
further search. 
Inference algorithms used to ensure local consistency perform a bounded amount of 
inference. The primary characteristic by which they are distinguished is the number of 
variables or the number of constraints involved. Any search algorithm will benefit from 
representations that have a high level of consistency. The complexity of enforcing i-
consistency is exponential in i, as this is the time and space needed to infer a constraint 
based on i variables. There is a trade-off between the time spent on inference and the time 
spent on subsequent search. 
Because of the nature of search algorithms which usually extend a partial solution in order 
to get a complete one, the notion of directional consistency was introduced. The inference is 
restricted relative to a given ordering of the variables. Directed arc-consistency is the 
simplest algorithm in this category; it ensures that any legal value in the domain of a single 
variable has a legal match in the domain of any other selected variable (Wallace, 1995; 
Larossa et al., 1999). 

2.1.1 Bucket Elimination 
Bucket Elimination (Dechter, 1999; 1996) is a less expensive directional consistency 
algorithm that enforces global consistency only relative to a certain variable ordering. The 
algorithm takes as input an ordering of variables and the cost functions. The method 
partitions the functions into buckets. Each function is placed in the bucket corresponding to 
the variable which appears latest in the ordering. After this step, two phases take place then. 
In the first phase the buckets are processed from last to first. The processing consists in a 
variable elimination procedure that computes a new function which is placed in a lower 
bucket. In the second phase, the algorithm considers the variables in increasing order. It 
builds a solution by assigning a value to each variable, consulting the functions created 
during the first phase. 
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Mini-bucket Elimination (MBE) (Dechter & Rish, 2003) is an approximation of the previous 
algorithm which tries to reduce space and time complexity. The buckets are partitioned into 
smaller subsets, called mini-buckets which are processed separately, in the same way as in 
BE. The number of variables from each mini-bucket is upper bounded by a parameter, i. The 
time and space complexity of the algorithm is O(exp(i)). The scheme allows this way 
adjustable levels of inference. This parameter controls the trade-off between the quality of 
the approximation and the computational complexity. 
For the Max-CSP problem, the MBE algorithm produces new functions computed as the 
sum of all constraint matrices and minimizes it over the bucket’s variable (Kask & Dechter, 
2000). 
 

 
 

The mini-bucket algorithm is expanded in (Kask & Dechter, 2000) with a mechanism to 
generate some heuristic functions. The functions recorded by MBE can be used as a lower 
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bound for the number of constraints violated by the best extension of any partial 
assignment. For this reason these functions can be used as heuristic evaluations functions in 
search. Given a partial assignment of the first p variables xp

 =(x1, . . . , xp), the number of 
constraints violated by the best extension of xp

 is: 

 
for the variable ordering d = (X1, ...,Xn). 
The previous sum can be computed as: 

 
where h*(xp) can be estimated by a heuristic function h(xp), derived from the functions 
recorded by the MBE algorithm. h(xp) is defined as the sum of all the   functions that 
satisfy the following properties: 
• they are generated in buckets p + 1 through n, and 
• they reside in buckets 1 through p. 

 

 represents the function created by processing the j-th mini-bucket in bucketk. The heuristic 
function f can be updated recursively: 

 
where H(xp) computes the cost of extending the instantiation xp-1 with the value xp for the 
variable placed on the position p in the given ordering: 

 
In the formula above Cpj are the constraints in bucket p, hpk are the functions in bucket p and 

 are the functions created in bucket p which reside in buckets 1 through p -1. 

3. Evolutionary algorithms for CSPs 
3.1 Existing approaches 
Evolutionary Computation techniques are population-based heuristics, inspired from the 
natural evolution paradigm. All techniques from this area operate in the same way: they 
maintain a population of individuals (particles, agents) which is updated by applying some 
operators according to the fitness information, in order to reach better solution areas. The 
most known evolutionary computation paradigms include evolutionary algorithms (Genetic 
Algorithms, Genetic Programming, Evolutionary Strategies, Evolutionary Programming) 
and swarm intelligence techniques (Ant Colony Optimization and Particle Swarm 
Optimization). 
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Evolutionary algorithms (Michalewicz, 1996) are powerful search heuristics which work 
with a population of chromosomes, potential solutions of the problem. The individuals 
evolve according to rules of selection and genetic operators. 
Because the application of operators cannot guarantee the feasibility of offspring, constraint 
handling is not straightforward in an evolutionary algorithm. Several methods were 
proposed to handle constraints with Evolutionary algorithms. The methods could be 
grouped in the following categories (Michalewicz, 1995; Michalewicz & Schoenauer, 1996; 
Coello & Lechunga, 2002): 
• preserving feasibility of solutions 

For particular problems, where the generic representation schemes are not appropriate, 
special representations and operators have been developed (for example, the 
GENOCOP (GEnetic algorithm for Numerical Optimization of COnstrained Problems) 
system (Michalewicz & Janikow, 1991). A special representation is used aiming at 
simplifying the shape of the search space. Operators are designed to preserve the 
feasibility of solutions. 
Other approach makes use of constraint consistency to prune the search space 
(Kowalczyk, 1997). Unfeasible solutions are eliminated at each stage of the algorithm. 
The standard genetic operators are adapted to this case. 
Random keys encoding is another method which maintains the feasibility of solutions 
and eliminates the need of special operators. It was used first for certain sequencing and 
optimization problems (Bean, 1994). The solutions encoded with random numbers are 
then used as sort keys to decode the solution. 
In the decoders approach (Dasgupta & Michalewicz, 2001), the chromosomes tell how 
to build a feasible solution. The transformation is desired to be computationally fast. 
Another idea, which was first named strategic oscillation, consists in searching the areas 
close to the boundary of feasible regions (Glover & Kochenberger, 1995). 

• penalty functions 
The most common approach for constraint-handling is to use penalty functions to 
penalize infeasible solutions (Richardson et al., 1989). Usually, the penalty measures the 
distance from the feasible region, or the effort to repair the solution. Various types of 
penalty functions have been proposed. The most commonly used types are: 
- static penalties which remain constant during the entire process 
- dynamic functions which change through a run 
- annealing functions which use techniques based on Simulated Annealing 
- adaptive penalties which change according to feedback from the search 
- co-evolutionary penalties in which solutions evolve in one population and penalty 

factors in another population 
- death penalties which reject infeasible solutions. 
One of the major challenges is choosing the appropriate penalty value. Large penalties 
discourage the algorithm from exploring infeasible regions, and push rapidly the EA 
inside the feasible region. For low penalties, the algorithm will spend a lot of time 
exploring the infeasible region. 

• repairing infeasible solution candidates 
Repair algorithms are problem dependent algorithms which modify a chromosome in 
such a way that it will not violate the constraints (Liepins & Vose, 1990). The repaired 
solution is used only for evaluation or can replace with some probability the original 
individual. 
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• separation of objectives and constraints 
The constraints and the objectives are handled separately. For example, in (Paredis, 
1994) a co-evolutionary model consisting of two populations, one of constraints, one of 
possible solutions is proposed. The populations influences each other; an individual 
with a high fitness from the population of potential solutions represents a solution 
which satisfies many constraints; an individual with a high fitness from the population 
of constraints represent a constraint that is violated by many possible solutions. 
Another idea is to consider the problem as a multi-objective optimization problem, in 
which we will have m+1 objectives, m being the number of constraints. Then we can 
apply a technique from this area to solve the initial problem. 

• hybrid methods 
Evolutionary algorithms are coupled with another techniques. 

There have been numerous attempts to use Evolutionary algorithms for solving constraint 
satisfaction problems (Dozier et al., 1994), (Paredis, 1994), (Eiben & Ruttkay, 1996). The 
Stepwise Adaptation of Weights is one of the best evolutionary algorithms for CSP solving. The 
constraints that are not satisfied are penalized more. The weights are initialized (with 1) and 
reset by adding a value after a number of steps. Only the weights for the constraints that are 
violated by the best individual are adjusted. An individual is a permutation of variables. A 
partial instantiation is constructed by considering the variables for assigning values in the 
order given by the chromosome. The variable is left uninstantiated if all possible values add 
a violation. The uninstantiated variables are penalized. The fitness is equal with the sum of 
all penalties. 
Another efficient approach is the Microgenetic Iterative Descent Algorithm (Dozier et al., 1994). 
The algorithm uses a small population size. At each iteration an offspring is created by 
crossover or mutation operator, the operator being chosen after an adaptive scheme. A 
candidate solution is represented by n alleles, a pivot and a fitness value. Each allele has the 
variable, its value, the number of constraint violations the variable is involved in and an 
hvalue used for initializing the pivot. The pivot is used to choose the variable that will 
undergo mutation. If the fitness of the child is worse than the parent value, the h-value of 
the pivot offspring is decremented. The pivot is updated next: for each allele, the sum of the 
number of constraint violations and its h-value are computed; the allele with the highest 
value is chosen as the pivot. The fitness function is adaptive, employing the Morris Breakout 
Creating Mechanism (Morris, 1993) to escape from local optima. 
Another approach for solving CSPs makes use of heuristics inside the evolutionary 
algorithm. In (Eiben et al., 1994) heuristics are incorporated into the genetic operators. The 
mutation operator selects a number of variables to be mutated and assigns them new values. 
The selected variables are those appearing in constraints that are most often violated. The 
new values are those that maximize the number of satisfied constraints. Another way of 
incorporating heuristic information in an evolutionary algorithm is described in (Marchiori 
& Steenbeek, 2000). The heuristics are not incorporated into operators, but as a standalone 
module. Individual solutions are improved by calling a local optimization procedure for 
each of them and then blind genetic operators are applied. 
In (Craenen et al., 2003) a comparison of the best evolutionary algorithms is given. 

3.2 Hybrid evolutionary algorithms for CSP 
Generally, to obtain good results for a problem we have to incorporate knowledge about the 
problem into the evolutionary algorithm. Evolutionary algorithms are flexible and can be 
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easily extended by incorporating standard procedures for the problem under investigation. 
The heuristic information introduced in an evolutionary algorithm can enhance the 
exploitation but will reduce the exploration. A good balance between exploitation and 
exploration is important. 
We will describe next the approach presented in (Ionita et al., 2006). The method includes 
information obtained through constraint processing into the evolutionary algorithm in order 
to improve the search results. The basic idea is to use the functions returned by the 
minibucket algorithm as heuristic evaluation functions. The selected genetic algorithm is a 
simple one, with a classical scheme. The special particularity is that the algorithm uses the 
inferred information in a genetic operator and an adaptive mechanism for escaping from 
local minima. 
A candidate solution is represented by a vector of size equal to the number of variables. The 
value at position i represents the value of the corresponding variable, xi. The algorithm 
works with complete solutions, i.e. all variables are instantiated. Each individual in the 
population has associated a measure of its fitness in the environment. The fitness function 
counts the number of violated constraints by the candidate solution. 
In an EA the search for better individuals is conducted by the crossover operator, while the 
diversity in the population is maintained by the mutation operator. 
The recombination operator is a fitness-based scanning crossover. The scanning operator 
takes as input a number of chromosomes and returns one offspring. It chooses one of the i-
th genes of the n parents to be the i-th gene of the offspring. For creating the new solution, 
the best genes are preserved. Our crossover makes use of the pre-processing information 
gathered with the inference process. It uses the functions returned by the mini-bucket 
algorithm, f *(xp) to decide the values of the offspring. The variables are instantiated in a 
given order, the same as the one used in the mini-bucket algorithm. A new value to the next 
variable is assigned by choosing the best value from the parents according to the evaluation 
functions f *. As stated before, these heuristic functions provide an upper bound on the cost 
of the best extension of a given partial assignment. 
 

 
 

This recombination operator intensifies the exploitation of the search space. It will generate 
new solutions if there is sufficient diversity in the population. An operator to preserve 
variation is necessary. The mutation operator has this function, i.e. it serves for exploration. 
The operator assigns a new random value for a given variable. 
After the application of the operators, the new individuals will replace the parents. Selection 
will take place next to ensure the preservation of fittest individuals. A fitness-based selection 
was chosen for experiments. 
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Because the crossover and the selection direct the search to most fitted individuals, there is a 
chance of getting stuck in local minima. There is a need to leave the local minima and to 
explore different parts of the search space. Therefore, we have included the earliest breakout 
mechanism (Morris, 1993). When the algorithm is trapped in a local minimum point, a 
breakout is created for each nogood that appears in this current optimum. The weight for 
each newly created breakout is equal to one. If the breakout already exists, its weight is 
incremented by one. A predefined percent of the total weights (penalties) for an individual 
that violates these breakouts are added to the fitness function. In this manner the search is 
forced to put more emphasis on the constraints that are hard to satisfy. The evaluation 
function is an adaptive function because it is changed during the execution of the algorithm. 

4. Particle swarm optimization for CSPs 
The idea of combining inference with heuristics was also tested on another population-
based paradigm, the Particle Swarm Optimization. The method presented in (Breaban et al., 
2007) is detailed next. 
 

 

4.1 Particle swarm optimization 
Particle Swarm Optimization is a Swarm Intelligence technique which shares many features 
with Evolutionary Algorithms. Swarm Intelligence is used to designate the artificial 
intelligence techniques based on the study of collective behavior in decentralized, self-
organized systems. Swarm Intelligence systems are typically made up of a population of 
simple autonomous agents interacting locally with one another and with their environment. 
Although there is no centralized control, the local interactions between agents lead to the 
emergence of global behavior. Examples of systems like this can be found in nature, 
including ant colonies, bird flocking, animal herding, bacteria molding and fish schooling. 
The PSO model was introduced in 1995 by J. Kennedy and R.C. Eberhart, being discovered 
through simulation of a simplified social model such as fish schooling or bird flocking 
(Kennedy & Eberhart, 1995). PSO consists of a group (swarm) of particles moving in the 
search space, their trajectory being determined by the fitness values found so far. 
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The formulas used to actualize the individuals and the procedures are inspired from and 
conceived for continuous spaces. Each particle is represented by a vector x of length n 
indicating the position in the n-dimensional search space and has a velocity vector v used to 
update the current position. The velocity vector is computed following the rules: 
• every particle tends to keep its current direction (an inertia term); 
• every particle is attracted to the best position p it has achieved so far (a memory term); 
• every particle is attracted to the best particle g in population (the particle having the 

best fitness value); there are versions of the algorithm in which the best particle g is 
chosen from topological neighborhood. 

Thus, the velocity vector is computed as a weighted sum of the three terms above. The 
formulas used to update each of the individuals in the population at iteration t are: 

 (1) 

 (2) 

4.2 Adapting PSO to Max-CSP 
Schoofs and Naudts (Schoofs & Naudts, 2002) have previously adapted the PSO algorithm 
for solving binary constraint problems. Our algorithm is formulated for the more general 
Max-CSP problem. The elements of the algorithm are presented below. 
An individual is an instantiation of all variables with respect to their domains. 
The evaluation (fitness) function counts the violated constraints. Because Max-CSP is 
formulated as a minimization problem smaller values of the evaluation function correspond 
to better individuals. 
The algorithm uses the basic idea of PSO: every particle tends to move towards his personal 
best and towards the global best. Updating the particle consists in instantiating its variables 
by choosing from the values of the two particles or keeping its own values. The decision is 
made based on the values of the heuristic function described in section 2.1.1. The MBE 
inference scheme is used as a preprocessing step. 
The velocity and the operators must be redefined in order to adapt the PSO formulas to the 
problem. This technique has already been used in order to adapt the PSO to discrete 
problems. For example, for permutation problems the velocity was redefined as a vector of 
transposition probabilities (X. Hu et al., 2003) or as a list of transpositions (Clerc, 2000) and 
the sum between a particle position and the velocity consists in applying the transpositions. 
We define the velocity which results from the subtraction of two positions  as 
the vector  where → represents as in (Schoofs & Naudts, 2002) a change of 
position. 
The sum  of the two velocities  produces the velocity  
given by 

 
where H is the heuristic function described in section 2.1.1. 
The addition  to a position  is defined by 

 
No parameter is used. 
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The PSO formulas become: 

 (3) 

 (4) 

Because the first term  in equation (3) is the velocity used to obtain the position  
at time t -1 we replace it with the velocity  In this way the resulted 
velocity formula selects the particle which has the smaller heuristic function value from the 
current position x, the personal best p and the global best g. 
The pseudocode of the algorithm is illustrated in Algorithm 4. 
The step (*) from the pseudocode can be described as: 
 

 
 

 
 

In order to explore the search space and to prevent the algorithm from getting trapped in 
local optima a mutation operator is introduced. This is identical to the one used in GAs: a 
random value is set on a random position. The role of the mutation is not only to maintain 
diversity but also to introduce values from variables’ domains which do not exist in the 
current population. To maintain diversity, the algorithm also uses the following strategies: 
1. in case of equal values for the evaluation function the priority is given to the current value 
and then to the personal optimum; 2. the algorithm is not implementing the online elitism: 
the best individual is not kept in population, the current optimum can be replaced by a 
worst individual in future iterations. 
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5. Tests and results 
5.1 Data suite 
Experiments were conducted only on binary CSPs (each constraint is built over at most two 
variables), but there is no reason that the algorithm could not be run on n-ary CSPs with  
n >2. 
The algorithms were tested on two well-known models for generating CSPs. 
The four-parameter model (Smith, 1994), called model B does not allow the repetition of the 
constraints. A random CSP is given by four parameters (N, K, C, T), where N represents the 
number of variables, K the domain size, C the number of constraints and T the constraint 
tightness. The tightness represents the number of tuples not allowed. C constraints are 
selected uniformly at random from the available N(N - 1)/2 ones and for each constraint T 
nogoods are selected from the available K2 tuples. We have tested the approach on some 
over-constrained classes of binary CSPs. The selected classes are sparse 〈25, 10, 37, T〉, with 
medium density 〈15, 10, 50, T〉 and complete graphs 〈10, 10, 45, T〉. For each class of problem 
the algorithms were tested on 50 instances. 
We investigate the hybrid approaches also against the set of CSP instances made available 
by Craenen et al. on the Web1. These instances are generated using the model E (Achlioptas 
et al., 2001). We have experimented with 175 solvable problem instances: 25 instances for 
different values of p in model E(20, 20, p,2). Parameter p takes the following values: {0.24, 
0.25, 0.26, 0.27, 0.28, 0.29, 0.30}. All instances considered were solvable. 

5.2 Algorithms settings 
The variable ordering used in MBE was determined with the min-induced-width heuristic. 
This method places the variable with the minimum degree last in the ordering. It connects 
then all of the variable neighbors, removes the node and all its adjacent edges and next 
repeats the procedure. 
Experiments were made for different levels of inference, changing the values of the 
parameter i in the MBE algorithm. Values 0 and 1 for parameter i means that no inference is 
used. Value 2 for i corresponds to a DAC (directed arc consistency) preprocessing adapted 
to Max-CSP: instead of removing values from variable domains cost functions are added for 
variable-value pairs that count the number of variables for which no legal value match is 
found. Greater values for parameter i generate new cost functions over at most i -1 variables. 
For model B, for each class of problems 50 instances were generated. The problems were 
first solved using a complete algorithm PFC-MRDAC (Larossa & Meseguer, 1998). This 
algorithm is an improved branch-and-bound algorithm, specifically designed for the Max-
CSP problem. The optimal solution was the solution found by the PFC-MRDAC algorithm. 
For each instance, for both PSO-MBE and GA-MBE, five independent runs were performed. 
The number of parents for the recombination operator in GA-MBE was established to five. 
The population size was set to 40 in the GA-MBE, while for PSO-MBE the swarm size was 
equal to 30 particles. A time limit of 30 seconds was imposed for all search algorithms (the 
time limit is used only for the search phase and does not include time needed for MBE). 
For comparison purposes the Branch and Bound algorithm described in (Kask & Dechter, 
2000) was implemented. 

                                                 
1 1http://www.xs4all.nl/ craenen/resources/csps modelE v20 d20.tar.gz 
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5.3 Results 
As measures of effectiveness we use as in (Craenen et al., 2003) the success rate and the 
mean error at termination. The success rate represents the percentage of runs that find a 
solution. The mean error at termination for a run is equal to the number of constraints which 
are violated by the best solution, at the end of the algorithm. 
The average number of constraint checks and the average duration of the algorithms until 
the optimum solution is reached was recorded only for the runs which find the optimum 
within the time limit. 

5.3.1 Results for MBE and Branch-and-Bound 
The results concerning the two criteria on model B instances for the inference algorithm and 
a Branch and Bound algorithm are given in Table 1. Each line of the table corresponds to a 
class of CSPs. 
Obviously, the Mini-bucket elimination algorithm solves more problems when the bound i 
increases. The Branch-and-Bound algorithm behaves similarly. However, the time needed to 
find a solution increases too (see Table 2). 
 

 
Table 1. Results on model B: the success rate and the mean error for Mini-Bucket Elimination 
(MBE) and Branch and Bound (B&B) algorithms for different levels of inference(i) 

The results on model E are given in Figure 1 and Figure 2. 
The Branch and Bound algorithm is not influenced at all by the low levels of inference 
performed (the three curves in Figure 1 and 2 overlap); higher levels of inference are 
necessary but they require much more time and space resources. 

5.3.2 Results for the hybrid evolutionary computation algorithms Model B 
The success rate and the mean error measures for the hybrid approaches are given in Table 3. 
The search phase of the hybrid algorithms improves considerably the performance of the 
inference algorithm. For the class of problems 15 – 10 – 50 – 84 the MBE with i = 4 did not 
find the optimum for any of the generated problems. GA-MBE and PSO-MBE have solved 
41%, respectively 52% of the problems. 
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Table 2. Results on model B: average time in seconds for MBE and B&B algorithms for the 
runs which return the optimum 

 
Fig. 1. Results on model E: Success rate for B&B 

Even when the optimum solution was not found, the hybrid algorithms return a solution 
closed to the optimum. This conclusion can be drawn from Table 3 by looking at the mean 
error values. 
We have also used an additional criterium for the evaluation of the hybrid algorithms. The 
standard measure of the efficiency of an evolutionary algorithm, the number of fitness 
evaluations is not very useful in this context. The use of heuristics implies more 
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Fig. 2. Results on model E: Average mean error for B&B 
 

 
Table 3. Results on model B: the success rate and the mean error for GA and PSO hybrid 
algorithms 

computation that is invisible for this metric. Therefore we have computed the average 
number of constraint checks, for the runs which return the optimum solution (see Table 4). 
Regarding the number of constraint checks performed by the two algorithms, one general 
rule can be drawn: the higher the inference level, the less the time spent on search. 
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Table 4. Results on model B: the average constraint checks of the hybrid evolutionary 
computation algorithms 

For sparse instances the efficiency of the preprocessing step is evident for the two 
algorithms: increasing the inference level more problems are solved. The Genetic Algorithm 
for medium density cases behaves similarly as for the sparse one. For complete graphs, the 
genetic algorithm for i = 0 (no inference) gives a good percent of solved problems. But the 
best results are for the larger level of inference. In almost all cases, the performance of the 
GAMBE is higher when using a higher i-bound. This proves that the evolutionary algorithm 
uses efficiently the information gained by preprocessing. 
When combined with PSO, inference is useful only on sparse graphs; on medium density 
and complete graphs low levels of inference slow down the search process performed by 
PSO and the success rate is smaller. Higher levels of inference (i = 6) necessitate more time 
spent on preprocessing and for complete graphs it is preferable to perform only search and 
no inference. 
Unlike evolutionary computation paradigms, the systematic Branch and Bound algorithm 
has much benefit from inference preprocessing for all classes of problems. When no 
inference is performed B&B solves only 2% of the sparse instances and 14% of the complete 
graphs. The approximative solutions returned after 30 seconds run are of lower quality than 
those returned by the evolutionary computation methods (the mean error is high). When 
inference is used the turnaround becomes obvious starting with value 4 for parameter i. 
Table 5 lists the average time spent by MBE and PSO algorithms for the runs which return 
the optimum. Similarly, Table 6 refers to MBE and B&B time. These tables are illustrative for 
the inference/search trade-off: increasing the inference level the time needed by the search 
algorithms to find the optimum decreases. 
An interesting observation can be drawn regarding the time needed by PSO to find the 
optimum: even if the algorithm is run for 30 seconds the solved instances required much 
shorter time; this is a clear indicator that PSO is able to find good solutions in a very short 
time but it gets stuck often in local optima and further search is compromised. 
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Table 5. Results on model B: average time in seconds for MBE and PSO algorithms for the 
runs which return the optimum 
Model E 
The results for model E corresponding to GA-MBE are given in Figure 3 and 4. Figures 5 
and 6 present the results for PSO-MBE. 
 

 
Table 6. Results on model B: average time in seconds for MBE and B&B algorithms for the 
runs which return the optimum 

The performance of the algorithms decreases with the difficulty of the problem. For smaller 
values of p (0.24) the percentage of solved problems increases with the inference level. For 
more difficult problems low levels of inference are useless. 
One can also observe that the mean error is small, meaning that the algorithm is stable 
(Figure 4 and Figure 6). This feature is very important for such kind of problems. 
Given that the bounded inference performed on the model E instances has low effect on 
subsequent search both for the randomized and the systematic methods, GA-MBE and  
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Fig. 3. Results on model E: success rate for GA-MBE 

 
Fig. 4. Results on model E: mean error for GA-MBE 
PSOMBE obtain better results than B&B: the percentage of solved problems (SR) is higher 
and the approximative solutions returned after 30 seconds run are better qualitatively. The 
average number of constraint checks on model E test instances increases with parameter p 
from 5 · 107 to 8 · 107 for PSO-MBE and from 9 · 107 to 2 · 108 for B&B. The average time for 
the runs which find the optimum increases with p from 9 seconds to 13 seconds for PSO-
MBE and from 10 seconds to 18 seconds for B&B. 
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Fig. 5. Results on model E: success rate for PSO-MBE 
 

 
Fig. 6. Results on model E: mean error for PSO-MBE 

Using the results from the comparative study of several genetic algorithms made by 
Craenen et al. (Craenen et al., 2003) we can conclude that the performance of the hybrid 
algorithms is comparable with that of the best GAs in the CSP field: Stepwise Adaptation of 
Weights and Glass-Box GA. Low levels of inference slightly improve the performance of our 
algorithm on difficult CSP instances; higher levels of inference are needed. 
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6. Conclusion 
The chapter presents some of the techniques based on Evolutionary Computation 
paradigms for solving constraints satisfaction problems. Two hybrid approaches based on 
the idea of using the heuristics extracted from an inference algorithm inside evolutionary 
computation paradigms are detailed. The effect of combining inference with randomized 
search was studied by exploiting the advantage of adaptable inference levels offered by the 
Mini-Bucket Elimination algorithm. Tests conducted on binary CSPs against a Branch and 
Bound algorithm show that the systematic search has more benefit from inference than the 
randomized search performed by evolutionary computation paradigms. However, on hard 
CSP instances the Branch and Bound algorithm requires higher levels of inference which 
imply a much greater computational cost in order to compete with evolutionary 
computation methods. 
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1. Introduction 
The financial time series forecasting is considered a rather difficult problem, due to the 
many complex features frequently present in such time series (irregularities, volatility, 
trends and noise). Several approaches have been studied for the development of predictive 
models able to predict time series, based on its past and present data. 
In the attempt to solve the time series prediction problem, a wide number of linear statistical 
models were proposed. Among them, the popular linear statistical approach based on Auto 
Regressive Integrated Moving Average (ARIMA) models [1] is one of the most common 
choices. However, since the ARIMA models are linear and most real world applications 
involve nonlinear problems, this can introduce an accuracy limitation of the generated 
forecasting models. 
In the attempt to overcome linear statistical models limitations, other nonlinear statistical 
approaches have been developed, such as the bilinear models [2], the threshold 
autoregressive models [3], the exponential autoregressive models [4], the general state 
dependent models [5], amongst others. The drawbacks of those nonlinear statistical models 
are the high mathematical complexity associated with them (resulting in many situations in 
similar performances to the linear models) and the need, most of the time, of a problem 
dependent specialist to validate the predictions generated by the model, limiting the 
development of an automatic forecast system [6]. 
Alternately, Artificial Neural Networks (ANNs) based approaches have been applied for 
nonlinear modeling of time series in the last two decades [7-14]. However, in order to define 
a solution to a given problem, ANNs require the setting up of a series of system parameters, 
some of them are not always easy to determine. The ANN topology, the number of 
processing units, the algorithm for ANN training (and its corresponding variables) are just 
some of the parameters that require definition. In addition to those, in the particular case of 
time series forecasting, another crucial element necessary to determine is the relevant time 
lags to represent the series [15]. In this context, evolutionary approaches for the definition of 
neural network parameters have produced interesting results [16{20]. Some of these works 
have focused on the evolution of the network weights whereas others aimed at evolving the 
network architecture. 
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In this context, a relevant work was presented by Ferreira [15], consisting of the Time-delay 
Added Evolutionary Forecasting (TAEF) method definition, which performs a search for the 
minimum number of necessary dimensions (the past values of the series) to determine the 
characteristic phase space of the time series. The TAEF method [15] finds the most fitted 
predictor model for representing a time series, and then performs a behavioral statistical test 
in order to adjust time phase distortions that may appear in the representation of some 
series. 
Nonlinear filters, on the other hand, have been widely applied to signal processing. An 
important class of nonlinear systems is based on the framework of Mathematical 
Morphology (MM) [21, 22]. Many works have focused on the design of morphological 
systems [21, 23-28]. An interesting work was presented by Salembier [29, 30], which 
designed Morphological/Rank (MR) filters via gradient-based adaptive optimization. Also, 
Pessoa and Maragos [31] proposed a new hybrid filter, referred to as 
Morphological/Rank/Linear (MRL) filter, which consists of a linear combination of an MR 
filter [29, 30] and a linear Finite Impulse Response (FIR) filter [31]. In the branch of the filters 
and Artificial Intelligence integration, Pessoa and Maragos [32] also proposed a neural 
network architecture involving MRL operators at every processing node. 
In the morphological systems context, another work was presented by Araújo et al. [33, 34]. 
It consists of an evolutionary morphological approach for time series prediction, which 
provides a mechanism to design a predictive model based on increasing and non-increasing 
translation invariant morphological operators and according to Matheron decomposition 
[35] and Banon and Barrera decomposition [36]. 
This work proposes the Morphological-Rank-Linear Time-lag Added Evolutionary 
Forecasting (MRLTAEF) method in order to overcome the random walk dilemma for 
financial time series prediction, which performs an evolutionary search for the minimum 
dimension to determining the characteristic phase space that generates the financial time 
series phenomenon. The proposed MRLTAEF method is inspired on Takens Theorem [37] 
and consists of an intelligent hybrid model composed of an MRL filter [31] combined with a 
Modified Genetic Algorithm (MGA) [16], which searches for the particular time lags capable 
of a fine tuned characterization of the time series and estimates the initial (sub-optimal) 
parameters of the MRL filter. Each individual of the MGA population is trained by the 
averaged Least Mean Squares (LMS) algorithm to further improve the MRL filter 
parameters supplied by the MGA. After training the model, the MRLTAEF method chooses 
the most tuned predictive model for the time series representation, and performs a 
behavioral statistical test [15] and a phase fix procedure [15] to adjust time phase distortions 
observed in financial time series. 
Furthermore, an experimental analysis is conducted with the proposed MRLTAEF method 
using six real world financial time series. Five well-known performance metrics are used to 
assess the performance of the proposed method and the obtained results are compared with 
the previously presented methods in literature. 
This work is organized as follows. In Section 2, the fundamentals and theoretical concepts 
necessary for the comprehension of the proposed method are presented, such as the time 
series prediction problem, the random walk dilemma for financial time series prediction, 
linear and nonlinear statistical models, neural network models, genetic algorithms (standard 
and modified), intelligent hybrid models (in particular the TAEF method). Section 3 shows 
the fundamentals and theoretical concepts of mathematical morphology and the MRL filter 
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definition and its training algorithm. Section 4 describes the proposed MRLTAEF method. 
Section 5 presents the performance metrics which are used to assess the performance of the 
proposed method. Section 6 shows the simulations and the experimental results attained by 
the MRLTAEF method using six real world financial time series, as well as a comparison 
between the results achieved here and those given by standard MLP networks, MRL filters 
and the TAEF method [15]. Section 7 presents, to conclude, the final remarks of this work. 

2. Fundamentals 
In this section, the fundamentals and theoretical concepts necessary for the comprehension 
of the proposed method will be presented. 

2.1 Time series forecasting problem 
A time series is a sequence of observations about a given phenomenon, where it is observed 
in discrete or continuous space. In this work all time series will be considered time discrete 
and equidistant. 
Usually, a time series can be defined by 

 (1) 

where t is the temporal index and N is the number of observations. The term Xt will be seen 
as a set of temporal observations of a given phenomenon, orderly sequenced and equally 
spaced. 
The aim of prediction techniques applied to a given time series (Xt) are to provide a 
mechanism that allows, with certain accuracy, the prediction of the future values of Xt, 
given by Xt+k, k = 1, 2, …, where k represents the prediction horizon. These prediction 
techniques will try to identify certain regular patterns present in the data set, creating a 
model capable of generating the next temporal patterns, where, in this context, a most 
relevant factor for an accurate prediction performance is the correct choice of the past 
window, or the time lags, considered for the representation of a given time series. 
Box & Jenkins [1] shown that when there is a clear linear relationship among the historical 
data of a given time series, the functions of auto-correlation and partial auto-correlation are 
capable of identifying the relevant time lags to represent a time series, and such procedure is 
usually applied in linear models. However, when it uses a real world time series, or more 
specifically, a complex time series with all their dependencies on exogenous and 
uncontrollable variables, the relationship that involves the time series historical data is 
generally nonlinear, which makes the Box & Jenkins' analysis procedure of the time lags 
only a crude estimate. 
In a mathematical sense, such a relationship involving time series historical data defines a d-
dimensional phase space, where d is the minimum dimension capable of representing such 
relationship. Therefore, a d- dimensional phase space can be built so that it is possible to 
unfold its corresponding time series. Takens [37] proved that if d is sufficiently large, such 
phase space is homeomorphic to the phase space that generated the time series. Takens' 
Theorem [37] is the theoretical justification that it is possible to build a state space using the 
correct time lags, and if this space is correctly rebuilt, Takens' Theorem [37] also guarantees 
that the dynamics of this space is topologically identical to the dynamics of the real system 
state space. 
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The main problem in reconstructing the original state space is naturally the correct choice of 
the variable d, or more specifically, the correct choice of the important time lags necessary 
for the characterization of the system dynamics. Many proposed methods can be found in 
the literature for the definition of the lags [38-40]. Such methods are based on measures of 
conditional probabilities, which consider, 

 (2) 

where f(xt-1, xt-2,…, xt-d) is a possible mapping of the past values to the facts of the future 
(where xt-1 is the lag 1, xt-2 is the lag 2,…, xt-d is the lag d) and rt is a noise term. 
However, in general, these tests found in the literature are based on the primary 
dependence among the variables and do not consider any possible induced dependencies. 
For example, if 

 (3) 

it is said that xt-1 is the primary dependence, and the dependence induced on xt-2 is not 
considered (any variable that is not a primary dependence is denoted as irrelevant). 
The method proposed in this work, conversely, does not make any prior assumption about 
the dependencies between the variables. In other words, it does not discard any possible 
correlation that can exist among the time series parameters, even higher order correlations, 
since it carries out an iterative automatic search for solving the problem of finding the 
relevant time lags. 

2.2 The random walk dilemma 
A naive prediction strategy is to define the last observation of a time series as the best 
prediction of its next future value (Xt+1 = Xt). This kind of model is known as the Random 
Walk (RW) model [41], which is defined by 

 (4) 
or 

 (5) 

where Xt is the current observation, Xt-1 is the immediate observation before Xt, and rt is a 
noise term with a gaussian distribution of zero mean and standard deviation σ (rt ≈ N(0, σ)). 
In other words, the rate of time series change (ΔXt) is a white noise. 
The model above clearly implies that, as the information set consists of past time series data, 
the future data is unpredictable. On average, the value Xt is indeed the best prediction of 
value Xt-1. This behavior is common in the finance market and in the economic theory and 
its so-called random walk dilemma or random walk hypothesis [41]. 
The computational cost for time series forecasting using the random walk dilemma is 
extremely low. Therefore, any other prediction method more costly than a random walk 
model should have a very superior performance than a random walk model, otherwise its 
use is not interesting in the practice. 
However, if the time series phenomenon is driven by law with strong similarity to a random 
walk model, any model applied to this time series phenomenon will tend to have the same 
performance as a random walk model. 
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Assuming that an accurate prediction model is used to build an estimated value of Xt, 
denoted by , the expected value (E[·]) of the difference between  and Xt must tend to 
zero, 

 (6) 

If the time series generator phenomenon is supposed to have a strong random walk linear 
component and a very weak nonlinear component (denoted by g(t)), and assuming that E[rt] 
= 0 and E[rtrk] = 0 (∀ k ≠t), the expected value of the difference between  and Xt will be 

 
But  , then  and 

 (7) 

Therefore, in these conditions, to escape the random walk dilemma is a hard task. 
Indications of this behavior (strong linear random walk component and a weak nonlinear 
component) can be observed from time series lagplot graphics. For example, lagplot 
graphics where strong linear structures are dominant with respect to nonlinear structures 
[42], generally observed in the financial and economical time series. 

2.3 Linear statistical models 
The time series prediction process consists of representing the time series features through a 
model able to extend such features to the future. According to Box & Jenkins [15], classical 
statistical models were developed to represent the following kind of information patterns: 
constants, trends and sazonalities. However, there are some variations that occur in such 
patterns as irregularities, volatility, noise, amongst other. 
In this way, it is possible to verify that the statistical models are based on transcendental or 
algebraic time functions, which can be represented by 

 (8) 

where bi and fi(t) (i = 1, 2,…, k) denotes, respectively, the constant parameters and 
mathematical functions of t. Term rt represents a random component or noise. 
However, there are other ways for time series modeling, where Xt will be modeled as a 
temporally ordered random component function, from the present to the past (rt, rt-1, rt-2,…). 
This kind of representation is kwon as “linear filter models”, which is widely applied when 
the time series observations are highly correlated [1]. In this way, Xt can be defined by 

 (9) 

where m and yi (i = 1, 2,…, k) are constants. 



 New Achievements in Evolutionary Computation 

 

42 

Therefore, the time series prediction process consists of an accurate parameters estimation of 
the prediction models to build the future behavior of a given phenomenon.  
Box & Jenkins Models In the literature, several models were proposed to solve the time 
series prediction problem. Among these models, it is verified that a wide number of them 
are linear: Simple Moving Averages (SMA) [43, 44], Simple Exponential Smoothing (SES) 
[43, 44], Brow's Linear Exponential Smoothing (BLES) [43, 44], Holt's Bi-parametric 
Exponential Smoothing (HBES) [43, 44], Adaptive Filtering (AF) [43, 44], are some examples 
of that. However, among these linear models, the Box & Jenkins [1] models receive a special 
mention, given that, in practice, are the most popular and commonly used to solve the time 
series prediction problem. 
Box and Jenkins [1] a set of algebraic models, referred to as Auto-Regressive Integrated 
Moving Average (ARIMA) models, where it builds an accurate prediction for a given time 
series. The ARIMA model is based on two main models: 
1. Auto-Regressive (AR), which is defined by 

 (10)

where , being μ defined as the mean of the time series. Terms φi (i = 1, 

2,…, p) denotes the auto-regressive coefficients. 
2. Moving Average (MA), which is defined by 

 (11)

Assuming that , it has 

 (12)

where  represent the moving average operator. 
The union of both AR and MA models build a model known as Auto-regressive Moving 
Average (ARMA) of order (p,q), which was proposed in the attempt to build the most 
parsimonious model as possible, given that, with the inclusion of auto-regressive and 
moving average terms in a unique model can be seen as a possible solution to obtain a small 
number of model parameters. In this way, the ARMA model is defined by 

 (13)

The ARIMA model basically consists of the application of data to the high-pass filter, which 
is sensible only to high frequencies of the function, which is applied to the ARMA model. 
Such a filter is represented by letter “I” (integrated) in the ARIMA notation and this is the 
main difference among the separated data by a constant distance d. This procedure, known 
as data differences, is performed to remove the data trends, building the time series as a 
stationary process, that is, an ARIMA(p,d,q) model is an algebraic study that show as a time 
series variable (Xt) is related with its past values (Xt-1,Xt-2,…,Xt-p) and the past noisy term 
values (rt-1, rt-2,…, rt-p), differentiated d times [15]. 
In this way, Box & Jenkins [1] proposed a procedure able to find an adequate prediction 
model to solve the time series prediction problem, as be seen in Figure 1. 
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Fig. 1. Box & Jenkins method procedure. 

According to Figure 1, it verifies that the first step (identification) uses two graphical devices 
to measure the correlation among the observations of the data set of the time series. Such 
devices are the Auto-Correlation Function (ACF) [1] and the Partial Auto-Correlation 
Function (PACF) [1]. In the second step (estimation), the model coefficients are estimated, 
and finally, in the third step (diagnosis), Box & Jenkins [1] proposed some checking 
procedures to determine the statistical suitability of the chosen model in previous steps. 
Then, the model that fails in these procedures will be rejected. 

2.4 Nonlinear statistical models 
As mentioned in the previous section, the ARIMA model [1] is one of the most common 
choices for the time series prediction. However, since the ARIMA models are linear and 
most real world applications involve nonlinear problems, this can introduce a limitation in 
the accuracy of the predictions generated, that is, this model assumes that the time series are 
stationary or generated by a linear process. However, it is not correct to generalize the 
linearity assumption of the time series due to the nonlinear nature of a given real-world 
phenomena, where nonlinear structures are found in historical time series data. 
n this way, a time series can be modeled by 

 (14)

where rt represents a random component, or noisy term. Terms p and q represent integer 
indexes that define the time windows of past terms of the time series and noise, respectively. 
The term h(·) denotes a nonlinear transference function, which build the mapping among 
the past and future values of the time series. 
Therefore, to overcome the linear statistical models limitations, several nonlinear statistical 
models have been proposed in the literature, such as the bilinear models [2], the exponential 
auto-regressive models [4], the threshold autoregressive models [3], and the general state 
dependent models [5], amongst other. 
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The general state dependent models (GSD) [5] of (p, q) order is defined as an expansion and 
a local linearization of Equation 14 in Taylor series around a fixed time point, which can be 
defined by 

 
(15)

where yt = (rt-q+1,…, rt, Xt-q+1,.., Xt)’ is defined as a state vector, and the symbol “"”denotes a 
transposition operator. 
A special class of such models, known as bilinear models [2], may be seen as a natural 
nonlinear extension of the ARMA model, making μ(x) and φi(x) constants and 

 the coefficients to be adjusted). The 
general form of bilinear models of (p, q, P, Q) order is defined by 

 
(16)

According to Ferreira [15], it is verified that Equation 16 is linear in terms Xt and rt and 
nonlinear regarding the cross term of Z and r. Thus, a bilinear model of first order can be 
built from the Equation 16 is given by 

 (17)

where α, β and γ are the constant parameters to be determined. 
Another particular class of such models, known as Exponential Auto-Regressive  
(EAR) models [4], of p order, is given by using a constant term 

 in Equation 15, and is formally 
defined by 

 
(18)

where γ denotes the time series scale factor. 
Another class of nonlinear models which are used in time series predictions are the 
Threshold Auto-Regressive (TAR) models [3], where its parameters depend only on past 
values of its own process, and represent a finite set of possible AR models that a particular 
process could obey at any time point [15]. However, if the switch on of such models is 
determined by the data values location regarding thresholds, in this way the TAR model is 
known as Self-Excited Threshold Auto-regressive (SETAR) model [45].  
A first-order TAR model is defined by 

 
(19)

where the constant d is defined as the threshold. 
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The SETAR model can be defined μ(x) = φ0(j), θj(x) = 0(∀x) and φi(yt-1) = Ái(j) if Xt-d ∈ R(j) (i = 
1, 2,…, p; j = 1, 2,…, l), being d a positive integer and R(j) is a subset of real numbers (the 
threshold). Thus, Equation 15 can be rewritten in these terms, defining a SETAR model by 

 
(20)

where such equation represents a SETAR model of kind (l, p,…, p). Term  denotes a 
white noise, being  independent of , with j ≠j ’. 
There are several other nonlinear models for time series prediction in literature, such as 
auto-regressive smooth models [46], auto-regressive models with time-dependent 
coefficients [46], auto-regressive conditional heteroscedastic models (ARCH) [47], amongst 
other. However, even with a wide number of nonlinear models proposed in the literature, 
De Gooijer and Kumar [46] do not find clear evidences, in terms of prediction performance, 
of nonlinear models when compared with the linear models. Clements et al. [45, 48] also 
argues that the prediction performance of such nonlinear models is more inferior than 
expected, and this problem still remains open. 
According to Ferreira [15], a general accepted concept is that the environment of a given 
temporal phenomenon is nonlinear, and the fact that the nonlinear models do not achieve 
the expected results is due to inability of such models to describe the time series 
phenomenon more accurately than simple linear approximations. In particular, it is verified 
that the models applied in real world stock market and finance are highly nonlinear [48]. 
However, the problem of financial time series prediction is still considered a very di±cult 
problem due to several complex characteristics that often are present in these time series 
(irregularities, volatility, trend and noise). 
Due to the complexity of the structures of relationships among time series data, there are 
several limitations of the nonlinear models when applied in real situations. One of these 
limitations is a high mathematical complexity, a factor that limits the nonlinear models to a 
performance similar to linear models, as well as the need, in most cases, of a problem 
specialist to validate the predictions generated by the model [6]. These factors suggest that 
new approaches must be developed in order to improve the prediction performance. 
Consequently, it is not surprising the great interest on the development of nonlinear models 
for time series prediction using new approaches and paradigms applied to the problem 
previously exposed. 

2.5 Neural network models 
The Artificial Neural Networks (ANN) are models that simulate biological neural systems 
behavior, particularly the human brain. The ANNs represent a parallel and distributed 
system composed of simple processing units, such as neurons, which calculate non linear 
mathematical functions. 
The neurons are contained in a spatial arrangement generally composed of one or more layers 
interconnected by a wide number of connections. Generally, in most models, such connections 
are associated with weights, which are responsible for the storage of knowledge represented in 
the model, used as weights for the signals to be processed by neurons in the network. 
Each ANN unit is conditioned to receive a signal, weighted by their respective input unit 
processing connections (ANN weights), which is processed by a mathematical function, 



 New Achievements in Evolutionary Computation 

 

46 

known as activation function or transfer function, and producing a new output signal which 
is propagated over the network. 
In this way, making an analogy to the human brain, an ANN has the ability to learn through 
examples, as well as perform interpolations and extrapolations of the learned information. 
In the ANN learning process the main task is to determine the intensity of connections 
among neurons, which are adjusted and adapted by learning algorithms, which aims to 
make a fine tuned adjustment of connection weights, in order to better generalize the 
information contained in the pattern examples. 
Therefore, a wide number of ANNs have been proposed in literature, which is worth 
mentioning, 
- MultiLayers Perceptron (MLP) Neural Networks [49]; 
- Recursive Networks [49]; 
- Kohonen Networks [50, 51]; 
- Hopfield Networks [52]; 
Among the several kinds of ANNs, the MLPs are undoubtedly the most popular due to 
convenience, flexibility and efficiency, and can be applied to a wide range of problems [9, 
49, 53]. 

2.6 MultiLayer perceptron neural networks 
The MLP neural networks are typically composed of several neuron layers. The first layer is 
known as the input layer, where information is passed to the network. The last layer is 
called the output layer, where the model responses of a given information is then produced. 
Among input and output layers, there are one or more layers, which are referred to as 
intermediate layers. 
Each layer is interconnected with the adjacent layer. If each neuron of a layer is connected to 
all neurons of the next layer, then it haas a fully connected MLP network (illustrated in 
Figure 2). 
 

 
Fig. 2. Fully connected three layer MLP neural network. 

An MLP is able to mapp past observations (network input) in their future values (network 
output). However, before having the capability to perform a given task, it is necessary that 
the network passes through a training or learning process. The MLP is typically trained by a 
supervised process and an external supervisor presents the input patterns and adjusts the 
weights of the network, according to the ANN success degree. For each pair of input-output, 
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the network will be adjusted to make the mapping between input patterns and desired 
output (output pattern). 
The ANN training is usually a very complex process, and according to a given problem, it 
requires a large number of input patterns. Each pattern of these vectors is presented to a 
neuron of the network input layer. In the time series prediction problem, the number of 
processing units in the ANN input layer is determined by the number of time lags of a given 
time series. 
The set of patterns (or historical data) are usually divided into three sets according to 
Prechelt [54]: training set (50% of the points), validation set (25% of the points) and test set 
(25% of the points). Thus, the ANN training uses these three sets. Initially, the set of training 
examples are presented to the network, then the information passed between the input, 
hidden and output layers, the response is calculated, then a training algorithm is perfomed 
to minimize the global error achieved by the network, calculating new values for the 
weights of the network, taking the difference between the desired output and the output 
obtained by the network, as in Sum of Squared Errors (SSE), given by 

 
(21)

where targeti is the real value of the i-th pattern, outputi is the response obtained by the 
network to the i-th pattern, and the factor  is just a term for the simplification derived from 
the expressions in Equation 21, often calculated in training algorithms such as 
BackPropagation in [49]. 

2.7 Genetic algorithms 
Evolutionary Algorithms (EAs) are a powerful class of stochastic optimization algorithms 
and have been widely used to solve complex problems which cannot be solved analytically. 
The most popular EA is the Genetic Algorithm (GA) [55, 56]. The GAs were developed by 
Holland [55] motivated by Charles Darwin's Evolution Theory [57], where its main goal was 
to find ways in which the mechanisms of natural adaptation might be integrated into 
computer systems. The GAs are used successfully in several kind of real-world applications 
due to their high search power in state spaces, being widely applied to optimization and 
learning machine problems. The GAs work with a set of attempt solutions (initial states) for 
the problem. This set, referred to as population, is evolved towards a sub-optimal or optimal 
solution to a given problem by performing a search in the multiple trajectory 
simultaneously. 
Standard Genetic Algorithm. In this section, a brief description of Standard Genetic 
Algorithm (SGA) procedure is presented, which is illustrated in Figure 3. More details will 
be supplied as follows. For further details see [56, 58-60]. 
According to Figure 3, the SGA procedure starts with the creation of an individuals' 
population, or more specifically, the solutions set. Then, each individual is evaluated by a 
fitness function (or cost function), which is a heuristic function that guides the search for an 
optimal solution in state space. After evaluating the SGA population, it is necessary to use 
some procedures to select the individual parent pairs, which will be used to perform the 
genetic operators (crossover and mutation). There are some procedures to perform this 
selection, and is worth mentioning the rank-based selection, elitist strategies, steady-state  
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Fig. 3. Standard genetic algorithm procedure. 

election and tournament selection [16], amongst others. The next step is responsible for 
performing the crossover genetic operator. Usually, the crossover operator mixes the parent 
genes for exchanging genetic information from both, obtaining its individual offspring. 
There are some procedures to perform the crossover operator such as one-point, two-point 
or multi-point crossover, arithmetic crossover, heuristic crossover [16], amongst others. 
After crossover operator, all offspring individuals will be the new population, which 
contains relevant characteristics of all individual parent pairs obtained in the selection 
process. The next step is to mutate the new population. The mutation operator is responsible 
for the individual genes aleatory modification, allowing the population diversification and 
enabling SGA to escape from the local minima (or maxima) of the surface of the cost 
function (fitness). After that, the new mutated population is evaluated. This procedure is 
repeated until a stop condition has been reached. 
Modified Genetic Algorithm. The Modified Genetic Algorithm (MGA) used here is based 
on the work of Leung et al. [16]. The MGA is a second version of the Standard Genetic 
Algorithm (SGA) [56, 58, 59] that was modified to improve search convergence. The SGA 
was first studied, and, then, was modified to accelerate its convergence through the use of 
modified crossover and mutation operators (described later). The algorithm is described in 
Figure 4. 
According to Figure 4, the MGA procedure consists of selecting a parent pair of 
chromosomes and then performing crossover and mutation operators (generating the 
offspring chromosomes – the new population) until the termination condition is reached; 
then the best individual in the population is selected as a solution to the problem. 
The crossover operator is used for exchanging information from two parents (vectors 1 and 

2) obtained in the selection process by a roulette wheel approach [16]. The recombination 
process to generate the offsprings (vectors C1,C2,C3 and C4) is done by four crossover 
operators, which are defined by the following equations [16]:  

 
(22)

 (23)

 (24)

 
(25)
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Fig. 4. The modified genetic algorithm procedure. 

where w ∈[0, 1] denotes the crossover weight (the closer w is to 1, the greater is the direct 
contribution from parents), max( 1, 2) and min( 1, 2) denotes the vector whose elements 
are the maximum and the minimum, respectively, between the gene values of 1 and 2. The 
terms  and  denote a vector with the maximum and minimum possible gene 
values, respectively. After offspring generation by crossover operators, the offspring with 
the best evaluation (greater fitness value) will be chosen as the offspring generated by the 
crossover process and will be denoted by  . 
After the crossover operator,  is selected to have a mutation process, where three new 
mutated offsprings are generated and defined by the following equation [16]: 

 (26)

where γi can only take the values 0 or 1, ΔMi are randomly generated numbers such that 
 pmax and NG denotes the number of genes in the chromosome. 

The first mutated offspring (M1) is obtained according to (26) using only one term γi set to 1 
(i is randomly selected within the range [1,NG]) and the remaining terms γi are set to 0. The 
second mutated offspring (M2) is obtained according to (26) using some γi, randomly 
chosen, set to 1 and the remaining terms γi are set to 0. The third mutated offspring (M3) is 
obtained according to (26) using all γi set to 1. 
It is worth mentioning that the GA is not directly used for modeling and predicting time 
series, but it is applied to support other methods and techniques in the search for the 
optimal or sub-optimal parameters of the predictive model [15]. 

2.8 Intelligent hybrid models 
Humans can be considered a good example of machines that have hybrid information. Their 
attitudes and actions are governed by a combination of genetic information and information 
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acquired through learning. In genetic information, known as genotype, the information that 
come with the individual in the form of genetic coding, are the features inherited from your 
parents. The phenotype is the combination of features given by genotype combined with the 
environmental influences. The information in our genes ensures the success of our survival, 
which has been proven and tested over millions of years of evolution. Human learning 
consists of a variety of complex processes that use information acquired from environmental 
interactions. It is the combination of these different types of methods of processing 
information that enables humans to succeed in their survival in dynamic environments that 
change all the time. 
This kind of hybrid information processing has been replicated on adaptive machines 
generation, where in their main unit processing there are intelligent computing systems and 
some mechanisms inspired by nature. It is possible to find some examples: neural networks 
[49, 61], genetic algorithms [56, 58, 59], fuzzy systems [62], artificial immune systems [63], 
expert systems [64] and induction rules [65]. The IA techniques have produced encouraging 
results in some particular tasks, but some complex problems, such as time series prediction, 
can not be successfully solved by a single intelligent technique. Each of these techniques 
have strengths and weaknesses, which make them suitable for some and not other 
problems. These limitations have been the main motivation for the study of Hybrid 
Intelligent Systems (HIS) where two or more AI techniques are combined in order to 
overcome the particular limitations of an individual technique. Hybrid Intelligent systems 
are also important when considering a wide range of real world applications. Many areas 
have many complex components of different problems, each of them may require a different 
type of processing. Moreover, the HIS being can be combined with different techniques, 
including conventional computing systems. The reasons for the HIS built are numerous, but 
can be summarized in three [66]: 
1. Intensification Techniques: the integration of at least two different techniques, with the 

purpose of offsetting the weakness of a technique with the strength of the other; 
2. Multiplicity of Applications in Tasks: A HIS is built, with the purpose of a single 

technique not being applied to many sub-problems that some application might have; 
3. Implementation of Multiple Feature: the HIS build exhibits the capacity for multiple 

processing information within an architecture. Functionally, these systems emulate or 
mimic different processing techniques. 

There are many possible combinations of the various techniques of artificial intelligence for 
hybrid intelligent systems built, however the discussion outlined here will be limited to a 
combination of techniques such as artificial neural networks and genetic algorithms. 
TAEF Model. The Time-delay Added Evolutionary Forecasting (TAEF) method [15] tries to 
reconstruct the phase space of a given time series by carrying out a search for the minimum 
dimensionality necessary to reproduce the generator phenomenon of the time series. The 
TAEF method is an intelligent hybrid system based on Artificial Neural Networks (ANNs) 
architectures trained and adjusted by a Modified Genetic Algorithm (MGA) which not only 
searches for the ANN parameters but also for the adequate embedded dimension 
represented in the time lags. 
The scheme describing the TAEF algorithm is based on the iterative definition of the four 
main elements: (i) the underlying information necessary to predict the series (the minimum 
number of lags), (ii) the structure of the model capable of representing such underlying 
information for the purpose of prediction (the number of units in the ANN structure), (iii) 
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the appropriate algorithm for training the model, and (iv) a behavior test to adjust time 
phase distortions that appear in some time series. 
Following this principle, the important parameters defined by the algorithm are: 
1. The number of time lags to represent the series; 
2. The number of units in the ANN hidden layer; 
3. The training algorithm for the ANN. 
The TAEF method starts with the user defining a minimum initial fitness value (MinFit) 
which should be reached by at least one individual of the population in a given MGA 
round. The fitness function is defined as 

 
(27)

where MSE is the Mean Squared Error of the ANN and will be formally defined in Section 5. 
In each MGA round, a population of M individuals are generated, each of them being 
represented by a chromosome (in Ferreira's works [15] M = 10 was used). Each individual is 
in fact a three-layer ANN where the first layer is defined by the number of time lags, the 
second layer is composed of a number of hidden processing units (sigmoidal units) and the 
third layer is composed by one processing unit (prediction horizon of one step ahead). 
The stopping criteria for each one of the individuals are the number of epochs (NEpochs), 
the increase in the validation error (Gl) and the decrease in the training error (Pt). 
The best repetition (the smallest validation error) is chosen to represent the best individual. 
Following this procedure, the MGA evolves towards an optimal or close to optimal fitness 
solution (which may not be the best solution yet), according to the stopping criteria: number 
of generations created (NGen) and fitness evolution of the best individual (BestFit). 
After this point, when the MGA reaches a solution, the algorithm checks if the fitness of the 
best individual paired or overcame the initial value specified for the variable MinFit 
(minimum fitness requirement). If this is not the case, the value of MaxLags (maximum 
number of lags) is increased by one and the MGA procedure is repeated to search for a 
better solution. 
However, if the fitness reached was satisfactory, then the algorithm checks the number of 
lags chosen for the best individual, places this value as MaxLags, sets MinFit with the fitness 
value reached by this individual, and repeats the whole MGA procedure. In this case, the 
fitness achieved by the best individual was better than the fitness previously set and, 
therefore, the model can possibly generate a solution of higher accuracy with the lags of the 
best individual (and with the MinFit reached by the best individual as the new target). If, 
however, the new value of MinFit is, again, not reached in the next round, MaxLags gets the 
same value defined for it, just before the round that found the best individual, increased by 
one (the maximum number of lags is increased by one). The state space for the lag search is 
then increased by one to allow a wider search for the definition of the lag set. This 
procedure goes on until the stop condition is reached. After that, the TAEF method chooses 
the best model found among all the candidates. 
After the best model is chosen, when the training process is finished, a statistical test (t-test) 
is employed to check if the network representation has reached an “in-phase” matching 
(without a one step shift – the shape of the time series and the shape of the generated 
prediction has a time matching) or “out-of-phase” matching (with a one step shift { the 
shape of the time series and the shape of the generated prediction do not have a time 
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matching). If this test accepts the “in-phase” matching hypothesis, the elected model is 
ready for practical use. Otherwise, the method carries out a new procedure to adjust the 
relative phase between the prediction and the actual time series. The validation patterns are 
presented to the ANN and the output of these patterns are re-arranged to create new inputs 
that are both presented to the same ANN and set as the output (prediction) target. 
It is worth mentioning that the variable cont just represents the current iteration of the TAEF 
method. The maximum of ten iterations of the TAEF method (given by expression not cont > 
10), was chosen empirically according to previous experiments in order to generate an 
optimal prediction model. 

3. Mathematical morphology 
The Mathematical Morphology (MM) is based on two basic operations, the sum and 
substraction of Minkowski [67], which are respectively given by [68] 

 
(28)

 
(29)

where Xb = {x + b : x ∈ X} represents the input signal and Br = {–b : b ∈ B} is the reflected 
structuring element B. 
All of MM transformations are based on combinations of four basic operations, which are 
defined by [68] 

 (30)

 (31)

 (32)

 (33)

where Brc = {–b : b ∉B} represents the reflected complement of structuring element B. 
According to Sousa [68], an operator of kind Ψ: P(E) → P(E), where P(E) represents all 
subsets of E = RN, may be a translation invariant (Equation 34), increasing (Equation 35), 
decreasing (Equation 36) or window (Equation 37). 

 (34)

where Xh = {x + h : x ∈ X} represents the translation of X ∈ P(E) by vector h ∈ E. 

 (35)

 (36)
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 (37)

where Lx is the translation of L ∈ E finite. 

3.1 Morphological-Rank-Linear (MRL) filter preliminaries 
Definition 1 – Rank Function: the r-th rank function of the vector t = (t1, t2,…, tn) ∈ Rn

 is the r-
th element of the vector t sorted in decreasing order (t(1) ≥ t(2) ≥ … ≥t(n)). It is denoted by [31] 

 (38)

For example, given the vector t = (3, 0, 5, 7, 2, 1, 3), its 4-th rank function is  
Definition 2 – Unit Sample Function: the unit sample function is given by [31] 

 
(39)

where v ∈ R. 
Applying the unit sample function to a vector v = (v1, v2,…, vn) ∈ Rn, yields a vector unit 
sample function (Q(v)), given by [31] 

 (40)

Definition 3 – Rank Indicator Vector: the r-th rank indicator vector c of t is given by [31] 

 
(41)

where  “·” represents scalar product and the symbol T denotes 
transposition. 
For example, given the vector t = (3, 0, 5, 7, 2, 1, 3), its 4-th rank indicator function is c(t, 4) 
=  (1, 0, 0, 0, 0, 0, 1). 
Definition 4 – Smoothed Rank Function: the smoothed r-th rank function is given by [31] 

 (42)

with 

 
(43)

where cσ is an approximation for the rank function c and  
is a smoothed impulse function (where (v) is like sech2(v/σ)) (where sech is the hyperbolic 
secant), σ ≥ 0 is a scale parameter and “·” represents the scalar product. 
Thus,  is an approximation for the rank indicator vector v. Using ideas from the fuzzy set 
theory,  can also be interpreted as a membership function vector [31]. For example, if the 
vector t = (3, 0, 5, 7, 2, 1, 3),  then its smoothed 4-th rank 
indicator function is 
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where   

3.2 MRL filter definition 
The MRL filter [31] is a linear combination between a Morphological-Rank (MR) filter [29, 
30] and a linear Finite Impulse Response (FIR) filter [31]. 
Definition 5 – MRL Filter [31]: Let x = (x1, x2,…, xn) ∈ Rn represent the input signal inside an 
n-point moving window and let y be the output from the filter. Then, the MRL filter is 
defined as the shift-invariant system whose local signal transformation rule x → y is given 
by [31] 

 (44)
with 

 (45)
and 

 (46)

where λ ∈ R, a and b ∈ Rn. Terms a = (a1, a2,…, an) and b = (b1, b2,…, bn) represent the 
coefficients of the MR filter and the coefficients of the linear FIR filter, respectively. Term a 
is usually referred to “structuring element” because for r = 1 or r = n the rank filter becomes 
the morphological dilation and erosion by a structuring function equal to ±a within its 
support [31]. The structure of the MRL filter is illustrated in Figure 5. 
 

 
Fig. 5. Structure of the MRL filter. 

3.3 MRL filter training algorithm 
Pessoa and Maragos [31] presented an adaptive design of MRL filters based on the LMS 
algorithm [29, 30], the “rank indicator vector"” [31] and “smoothed impulses” [31] for 
overcoming the problem of nondifferentiability of rank operations. 
Pessoa and Maragos [31] have shown that the main goal of the MRL filter is to specify a set 
of parameters (a, b, r, λ) according to some design requirements. However, instead of using 
the integer rank parameter r directly in the MRL filter definition equations (44-46), they 
argued that it is possible to work with a real variable ρ implicitly defined through the 
following rescaling [31] 
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(47)

where ρ ∈ R, n is the dimension of the input signal vector x inside the moving window and 
round(·) denotes the usual symmetrical rounding operation. In this way, the weight vector 
to be used in the filter design task is defined by [31] 

 (48)

The framework of the MRL filter adaptive design is viewed as a learning process where the 
filter parameters are iteratively adjusted. The usual approach to adaptively adjust the vector 
w, and therefore design the filter, is to define a cost function J(w), estimate its gradient 
∇J(w), and update the vector w by the iterative formula 

 (49)

where µ0 > 0 (usually called step size) and i ∈ {1, 2, …}. The term µ0 is responsible for 
regulating the tradeoff between stability and speed of convergence of the iterative 
procedure. The iteration of Equation 49 starts with an initial guess w(0) and stops when 
some desired condition is reached. This approach is known as the method of gradient 
steepest descent [31]. 
The cost function J must reflect the solution quality achieved by the parameters 
configuration of the system. A cost function J, for example, can be any error function, such as 

 
(50)

where M ∈ {1, 2,…} is a memory parameter and e(k) is the instantaneous error, given by 

 (51)

where d(k) and y(k) are the desired output signal and the actual filter output for the training 
sample k, respectively. The memory parameter M controls the smoothness of the updating 
process. If we are processing noiseless signals, M = 1 is recommended [31]. However, when 
we use M > 1, the updating process tends to reduce the noise influence of noisy signals 
during the training [31].  
Hence, the resulting adaptation algorithm is given by [31] 

 
(52)

where µ = 2µ0 and i ∈ {1, 2,…}. From Equations (44), (45), (46) and (48), term  [31] may 
be calculated as 

 
(53)
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with 

 
(54)

 
(55)

 
(56)

 
(57)

where 

 
(58)

 
(59)

where n is the dimension of x and . 
It is important to mention that the unit sample function Q is frequently replaced by 
smoothed impulses , in which case an appropriate smoothing parameter σ should be 
selected (which will affect only the gradient estimation step in the design procedure [31]). 

4. The proposed morphological-rank-linear time-lag added forecasting 
(MRLTAEF) model 
The approach model in this work, referred to as Morphological-Rank-Linear Time-lag 
Added Evolutionary Forecasting (MRLTAEF) model, uses an evolutionary search 
mechanism in order to train and adjust the Morphological-Rank-Liner (MRL) filter applied 
to financial time series prediction. It is based on the definition of the four main elements 
necessary for building an accurate forecasting system [15]: 
- The underlying information necessary to predict the time series; 
- The structure of the model capable of representing such underlying information for the 

purpose of prediction; 
- The appropriate algorithm for training the model 
- The behavior statistical test to adjust time phase distortions 
It is important to consider the minimum possible number of time lags in the representation 
of the series because the model must to be as parsimonious as possible, avoiding the 
overfitting problem and decreasing the computacional cost. 
Based on that definition, the proposed method consists of a hybrid intelligent 
morphological-rank-linear model composed of a MRL filter [31] with a MGA [16], which 
searches for: 
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1. The minimum number of time lags to represent the series: initially, a maximum number 
of time lags (MaxLags) is pre-defined and then the MGA will search for the number of 
time lags in the range [1,MaxLags] for each individual of the population; 

2. The initial (sub-optimal) parameters of the MRL filter (mixing parameter (λ), rank (r), 
linear Finite Impulse Response (FIR) filter (b) and the Morphological-Rank (MR) filter 
(a) coefficients. 

Then, each element of the MGA population is trained via LMS algorithm [31] to further 
improve the parameters supplied by the MGA, that is, the LMS is used, for each individual 
candidate, to perform a local search around the initial parameters supplied by MGA. The 
main idea used here is to conjugate a local search method (LMS) to a global search method 
(MGA). While the MGA makes it possible to test of varied solutions in different areas of the 
solution space, the LMS acts on the initial solution to produce a fine-tuned forecasting 
model. The proposed method is described in Figure 6. 
 

 
Fig. 6. The proposed method. 
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Such a process is able to seek the most compact MRL filter, reducing computational cost and 
probability of model overfitting. Each MGA individual represents a MRL filter, where its 
input is defined by the number of time lags and its output represents the prediction horizon 
of one step ahead. 
Most works found in the literature have the fitness function (or objective function) based on 
just one performance measure, like Mean Square Error (MSE). However, Clements et al. [69], 
since 1993 has shown that the MSE measure has some limitations of availability and 
comparing the prediction model performance. Information about the prediction, as the 
absolute percentage error, the accuracy in the future direction prediction and the relative 
gain regarding naive prediction models (like random walk models and mean prediction) are 
not described using MSE measure. 
In order to provide a more robust forecasting model, a multi-objective evaluation function is 
defined, which is a combination of five well-known performance measures: Prediction Of 
Change In Direction (POCID), Mean Square Error (MSE), Mean Absolute Percentage Error 
(MAPE), Normalized Mean Square Error (NMSE) or U of Theil Statistic (THEIL) and 
Average Relative Variance (ARV), where all these measures will be formally defined in 
Section 5. The multi-objective evaluation function used here is given by 

 
(60)

Whereas there are linear and nonlinear metrics in the such evaluation function and each one 
of these metrics can contribute to different forms for the evolution process, the Equation 60 
was built from empirical form to have all information necessary to describe as well as allow 
the time series generator phenomenon. 
After MRL filter adjusting and training, the proposed method uses the phase fix procedure 
presented by Ferreira [15], where a two step procedure is introduced to adjust time phase 
distortions observed (“out-of-phase” matching) in financial time series. Ferreira [15] has 
shown that the representations of some time series (natural phenomena) were developed by 
the model with a very close approximation between the actual and the predicted time series 
(referred to as “in-phase” matching), whereas the predictions of other time series (mostly 
financial time series) were always presented with a one step delay regarding the original 
data (referred to as “out-of-phase” matching). 
The proposed method uses the statistical test (t-test) to check if the MRL filter model 
representation has reached an in-phase or out-of-phase matching (in the same way of TAEF 
method [15]). This is conducted by comparing the outputs of the prediction model with the 
actual series, making use only of the validation data set. This comparison is a simple 
hypothesis test, where the null hypothesis is that the prediction corresponds to in-phase 
matching and the alternative hypothesis is that the prediction does not correspond to in-
phase matching (or corresponds to out-of-phase matching). 
If this test accepts the in-phase matching hypothesis, the elected model is ready for practical 
use. Otherwise, the proposed method performs a new procedure to adjust the relative phase 
between the prediction and the actual time series. The phase fix procedure has two steps 
(described in Figure 7): (i) the validation patterns are presented to the MRL filter and the 
output of these patterns are re-arranged to create new inputs patterns (reconstructed 
patterns), and (ii) these reconstructed patterns are represented to the same MRL filter and 
the output set as the prediction target. This procedure of phase adjustment considers that 
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the MRL filter is not a random walk model, it just shows a behavior characteristic of a 
random walk model: the t + 1 prediction is taken as the t value (Random Walk Dilemma). 
If the MRL filter was like a random walk model, the phase adjust procedure would not 
work. Such phase fix was originally proposed by Ferreira [15], where he observed the fact 
that when Artificial Neural Network (ANN – Multilayer Perceptron like) is correctly 
adjusted (TAEF method), the one step shift distortion in the prediction can be softened. 
 

 
Fig. 7. Phase fix procedure. 

The termination conditions for the MGA are: 
1. Minimum value of fitness function: fitness ≥ 40, where this value mean the accuracy to 

predict direction around 80% (POCID 2 80%) and the sum of the other errors around 
one (MSE +MAPE + THEIL + ARV  1); 

2. The increase in the validation error or generalization loss (Gl) [54]: Gl > 5%; 
3. The decrease in the training error process training (Pt) [54]: Pt ≤ 10-6. 
Each individual of the MGA population is a MRL filter represented by the data structure 
with the following components (MRL filter parameters): 
- a: MR filter coefficients; 
- b: linear FIR filter coefficients; 
- ρ: variable used to determine the rank r; 
- λ: mixing parameter; 
- NLags: a vector, where each position has a real-valued codification, which is used to 

determine if a specific time lag will be used (NLagsi > 0) or not (NLagsi  ≤ 0). 

5. Performance metrics 
Many performance evaluation criteria are found in literature. However, most of the existing 
literature on time series prediction frequently employ only one performance criterion for 
prediction evaluation. The most widely used performance criterion is the Mean Squared 
Error (MSE), given by 

 
(61)

where N is the number of patterns, targetj is the desired output for pattern j and outputj is 
the predicted value for pattern j. 
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The MSE measure may be used to drive the prediction model in the training process, but it 
cannot be considered alone as a conclusive measure for comparison of different prediction 
models [69]. For this reason, other performance criteria should be considered for allowing a 
more robust performance evaluation. 
A measure that presents accurately identifying model deviations is the Mean Absolute 
Percentage Error (MAPE), given by 

 
(62)

where xj is the time series value at point j. 
The random walk dilemma can be used as a naive predictor (Xt+1 = Xt), commonly applied 
to financial time series prediction. Thus, a way to evaluate the model regarding a random 
walk model is using the Normalized Mean Squared Error (NMSE) or U of Theil Statistic 
(THEIL) [70], which associates the model performance with a random walk model, and 
given by 

 

(63)

where, if the THEIL is equal to 1, the predictor has the same performance than a random 
model. If the THEIL is greater than 1, then the predictor has a performance worse than a 
random walk model, and if the THEIL is less than 1, the predictor is better than a random 
walk model. In the perfect model, the THEIL tend to zero. 
Another interesting measure maps the accuracy in the future direction prediction of the time 
series or, more specifically, the ability of the method to predict if the future series value 
(prediction target) will increase or decrease with respect to the previous value. This metric is 
known as the Prediction Of Change In Direction (POCID) [15], and is given by 

 
(64)

where 

 
(65)

The last measure used associates the model performance with the mean of the time series. 
The measure is the Average Relative Variance (ARV), and given by 

 

(66)
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where,  is the mean of the time series. If the ARV is equal to 1, the predictor has the 
same performance of the time series average prediction. If the ARV is greater than 1, then 
the predictor has a performance worse than the time series average prediction, and if the 
ARV is less than 1, the predictor is better than the time series average prediction. In the ideal 
model, ARV tend to zero. 

6. Simulations and experimental results 
A set of six real world financial time series (Dow Jones Industrial Average (DJIA) Index, 
National Association of Securities Dealers Automated Quotation (NASDAQ) Index, 
Standard & Poor 500 Stock (S&P500) Index and Petrobras Stock Prices, General Motors 
Corporation Stock Prices and Google Inc Stock Prices) were used as a test bed for evaluation 
of the proposed method. All time series investigated were normalized to lie within the range 
[0, 1] and divided into three sets according to Prechelt [54]: training set (50% of the points), 
validation set (25% of the points) and test set (25% of the points). 
For all the experiments, the following initialization system parameters were used: cont = 1, 
MinFit = 40 and MaxLags = 4. The MGA parameters used in the proposed MRLTAEF 
method are a maximum number of MGA generations, corresponding to 104, crossover 
weight w = 0.9 (used in the crossover operator), mutation probability equals to 0.1. The MR 
filter coefficients and the linear FIR filter coefficients (a and b, respectively) were normalized 
in the range [–0.5, 0.5]. The MRL filter parameters λ and ρ were in the range [0, 1] and  
[–MaxLags,MaxLags], respectively. 
Next, the simulation results involving the proposed model will be presented. In order to 
establish a performance study, results previously published in the literature with the TAEF 
Method [15] were examined in the same context and under the same experimental 
conditions. For each time series, ten experiments were done, where the experiment with the 
best validation fitness function is chosen to represent the prediction model. 
In order to establish a performance study, results previously published in the literature with 
the TAEF Method [15] on the same series and under the same conditions are employed for 
comparison of results. In addition, experiments with MultiLayer Perceptron (MLP) 
networks and Morphological-Rank-Linear (MRL) filters were used for comparison with the 
MRLTAEF method. The Levenberg-Marquardt Algorithm [71] and the LMS algorithm [31] 
were employed for training the MLP network and the MRL filter, respectively. In all of the 
experiments, ten random initializations for each architecture were carried out, where the 
experiment with the best validation fitness function is chosen to represent the prediction 
model. The statistical behavioral test, for phase fix procedure, was also applied to all the 
MLP, MRL and TAEF models in order to guarantee a fair comparison among the models. 
It is worth mentioning that the results with ARIMA models were not presented in our 
comparative analysis since Ferreira [15] has shown that MLP networks obtained results 
better than ARIMA models, for all financial time series used in this work. Therefore, only 
MLP networks were used in our comparative analysis. 
Furthermore, in order to analyze time lag relations in the studied time series, the graphical 
methodology proposed by [42, 72], referred to as lagplot [72] or phase portrait [42], was 
employed. This consists of dispersion graph constructions relating the different time lags of 
the time series (Xt vs Xt-1, Xt vs Xt-2, Xt vs Xt-3, …), and allow observations of possible 
relative strong relationships between any pair of time lags (when a structured appearance is 
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shown in the graph). Although such technique is very limited since it depends on human 
interpretation of the graphs. However, its simplicity is a strong argument for its utilization 
[15]. 

6.1 Dow Jones Industrial Average (DJIA) index series 
The Dow Jones Industrial Average (DJIA) Index series corresponds to daily records from 
January 1st 1998 to August 26th 2003, constituting a database of 1,420 points. Figure 8 shows 
the DJIA Index lagplot. 
 

 
Fig. 8. DJIA Index series lagplot. 

According to Figure 8, it is seen that for all the time lags of DJIA Index series there is a clear 
linear relationship among the lags. However, with the increase in the time lag degree, the 
appearance of the structure towards the graph center indicates a nonlinear relationship 
among the lags. 
For the DJIA Index series prediction (with one step ahead of prediction horizon), the 
proposed method automatically chose the lag 2 as the relevant time lag (n = 1), defined the 
parameters ρ = 1.6374 and λ = 0.0038, and classified the best model as the “out-of-phase” 
model. Table 1 shows the results (with respect to the test set) for all the performance 
measures for the MLP, MRL, TAEF and MRLTAEF models. 
 

 
Table 1. Results for the DJIA Index series. 
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Figure 9 shows the actual DJIA Index values (solid line) and the predicted values generated 
by the MRLTAEF out-of-phase model (dashed line) for the last 100 points of the test set. 
 

 
Fig. 9. Prediction results for the DJIA Index series (test set): actual values (solid line) and 
predicted values (dashed line). 

Another relevant aspect to notice is that the MRLTAEF model chose the parameter λ = 
0.0038, which indicates that it used 99.62% of the linear component of the MRL filter and 
0.38% of the nonlinear component of the MRL filter, supporting the assumption (through 
lagplot analysis) that the DJIA Index series has a strong linear component mixed with a 
nonlinear component. 

6.2 National association of securities dealers automated quotation (NASDAQ) index 
series 
The National Association of Securities Dealers Automated Quotation (NASDAQ) Index 
series corresponds to daily observations from February 2nd 1971 to June 18th 2004, 
constituting a database of 8428 points. Figure 10 shows the NASDAQ Index lagplot. 
According to Figure 10, it is seen that the time lags of NASDAQ Index series present a clear 
linear relationship among them, which, in theory, can contribute to a better forecasting 
result. 
For the NASDAQ Index series prediction (with one step ahead of prediction horizon), the 
proposed method automatically chose the lag 2 as the relevant time lag (n = 1), defined the 
parameters ρ = 1.5581 and λ = 0.0005, and classified the model as “out-of-phase” matching. 
Table 2 shows the results (of the test set) for all performance measures for MLP, MRL, TAEF 
and MRLTAEF models. 
Figure 11 shows the actual NASDAQ Index values (solid line) and the predicted values 
generated by the MRLTAEF out-of-phase model (dashed line) for the last 100 points of the 
test set. 
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Fig. 10. NASDAQ Index series lagplot. 

 
Table 2. Results for the NASDAQ Index series. 

 
Fig. 11. Prediction results for the NASDAQ Index series (test set): actual values (solid line) 
and predicted values (dashed line). 
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It is worth mention that, as the MRLTAEF model chose λ= 0.0005, it used 99.95% of the 
linear component of the MRL filter and 0.05% of the nonlinear component of the MRL filter. 
This result can indicate that there is a nonlinear relationship among the time lags, a fact 
which could not be detected by the lagplot analysis. 

6.3 Standard & Poor 500 (S&P500) index series 
The Standard & Poor 500 (S&P500) Index is a pondered index of market values of the most 
negotiated stocks in the New York Stock Exchange (NYSE), American Stock Exchange 
(AMEX) and Nasdaq National Market System. The S&P500 series used corresponds to the 
monthly records from January 1970 to August 2003, constituting a database of 369 points. 
Figure 12 shows the S&P500 Index lagplot. 
 

 
 

Fig. 12. S&P500 Index series lagplot. 

According to Figure 12, it is also seen that for all the time lags of S&P500 Index series there 
is a clear linear relationship among the lags. However, with the increase in the time lag 
degree, the appearance of the structure towards the upper corner on the right hand side of 
the graph indicates a nonlinear relationship among the lags. 
For the S&P500 Index series prediction (with one step ahead of prediction horizon), the 
proposed method automatically chose the lags 2, 3 and 10 as the relevant time lags (n = 3), 
defined the parameters ρ = 1.2508 and λ = 0.0091, and classified the best model as “out-of-
phase” matching. Table 3 shows the results (for the test set) for all the performance 
measures for the MLP, MRL, TAEF and MRLTAEF models. 
Figure 13 shows the actual S&P500 Index values (solid line) and the predicted values 
generated by the MRLTAEF out-of-phase model (dashed line) for the 90 points of the test 
set. 
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Table 3. Results for the S&P500 Index series. 

 
Fig. 13. Prediction results for the S&P500 Index series (test set): actual values (solid line) and 
predicted values (dashed line). 

The proposed MRLTAEF chose λ = 0.0091, implying that it used 99.01% of the linear 
component of the MRL filter and 0.91% of the nonlinear component of the MRL filter, 
confirming the assumption (through lagplot analysis) that the S&P500 Index series has a 
strong linear component mixed with a nonlinear component. 

6.4 Petrobras stock prices series 
The Petrobras Stock Prices series corresponds to the daily records of Brazilian Petroleum 
Company from January 1st 1995 to July 3rd 2003, constituting a database of 2,060 points. 
Figure 14 shows the Petrobras Stock Prices lagplot. 
According to Figure 14, it is seen that for all the time lags of the Petrobras Stock Prices series 
there is a clear linear relationship among the lags. However, with the increase in the time lag 
degree, the appearance of the structure towards the graph center indicates a nonlinear 
relationship among the lags. 
For the Petrobras Stock Prices series prediction (with one step ahead of prediction horizon), 
the proposed method chose the lag 3 as the relevant time lag (n = 1), defined the parameters 
ρ = 1.9010 and λ = 0.0070, and classified the best model as “out-of-phase" matching. Table 4 
shows the results (for the test set) of all the performance measures for the MLP, MRL, TAEF 
and MRLTAEF models. 
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Fig. 14. Petrobras Stock Prices series lagplot. 

 
Table 4. Results for the Petrobras Stock Prices series. 

 
Fig. 15. Prediction results for the Petrobras Stock Prices series (test set): actual values (solid 
line) and predicted values (dashed line). 
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Figure 15 shows the actual Petrobras Stock Prices (solid line) and the predicted values 
generated by the MRLTAEF model out-of-phase (dashed line) for the 100 points of the test 
set. 
For this series the proposed MRLTAEF chose λ = 0.0070, which means that it used 99.30% of 
the linear component of the MRL filter and 0.7% of the nonlinear component of the MRL 
filter, confirming the assumption (through lagplot analysis) that the Petrobras Stock Prices 
series has a strong linear component mixed with a nonlinear component. 

6.5 General motors corporation stock prices series 
The General Motors Corporation Stock Prices series corresponds to the daily records of 
General Motors Corporation from June 23th 2000 to June 22th 2007, constituting a database 
of 1,758 points. Figure 16 shows the General Motors Corporation Stock Prices lagplot. 
 

 
Fig. 16. General Motors Corporation Stock Prices series lagplot. 

According to Figure 16, it is virified that for all the time lags of the General Motors 
Corporation Stock Prices series there is a clear linear relationship among the lags. However, 
with the increase in the time lag degree, the appearance of the structure towards the upper 
corner on the right hand side of the graph indicates a nonlinear relationship among the lags. 
For the General Motors Corporation Stock Prices series prediction (with one step ahead of 
prediction horizon), the proposed method chose the lags 2, 4, 5 and 8 as the relevant time 
lags (n = 4), defined the parameters ρ = 0.0617 and λ = 0.0011, and classified the best model 
as “out-of-phase” matching. Table 5 shows the results (for the test set) of all the performance 
measures for the MLP, MRL, TAEF and MRLTAEF models. 
Figure 17 shows the actual General Motors Corporation Stock Prices (solid line) and the 
predicted values generated by the MRLTAEF model out-of-phase (dashed line) for the 100 
points of the test set. 
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Table 5. Results for the General Motors Corporation Stock Prices series. 

 
Fig. 17. Prediction results for the General Motors Corporation Stock Prices series (test set): 
actual values (solid line) and predicted values (dashed line). 

For this series the proposed MRLTAEF chose λ = 0.0011, which means that it used 99.89% of 
the linear component of the MRL filter and 0.11% of the nonlinear component of the MRL 
filter, confirming the assumption (through lagplot analysis) that the General Motors 
Corporation Stock Prices series has a strong linear component mixed with a nonlinear 
component. 

6.6 Google Inc Stock Prices series 
The Google Inc Stock Prices series corresponds to the daily records of Google Inc from 
August 19th 2004 to June 21th 2007, constituting a database of 715 points. Figure 18 shows 
the Google Inc Stock Prices lagplot. 
According to Figure 14, it is seen that for all the time lags of the Google Inc Stock Prices 
series there is a clear linear relationship among the lags. However, with the increase in the 
time lag degree, the appearance of the structure towards the graph center indicates a 
nonlinear relationship among the lags. 
For the Google Inc Stock Prices series prediction (with one step ahead of prediction 
horizon), the proposed method chose the lags 2, 3 and 10 as the relevant time lags (n = 3), 
defined the parameters ρ = –1.5108 and λ = 0.0192, and classified the best model as “out-of-
phase” matching. Table 6 shows the results (for the test set) of all the performance measures 
for the MLP, MRL, TAEF and MRLTAEF models. 
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Fig. 18. Google Inc Stock Prices series lagplot. 

 
Table 6. Results for the Google Inc Stock Prices series. 

 
Fig. 19. Prediction results for the Google Inc Stock Prices series (test set): actual values (solid 
line) and predicted values (dashed line). 
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Figure 19 shows the actual Google Inc Stock Prices (solid line) and the predicted values 
generated by the MRLTAEF model out-of-phase (dashed line) for the 100 points of the test 
set. 
For this series the proposed MRLTAEF chose λ = 0.0192, which means that it used 98.08% of 
the linear component of the MRL filter and 1.92% of the nonlinear component of the MRL 
filter, confirming the assumption (through lagplot analysis) that the Google Inc Stock Prices 
series has a strong linear component mixed with a nonlinear component. 
In general, all generated prediction models using the phase fix procedure to adjust time 
phase distortions shown forecasting performance much better than the MLP model and 
MRL model, and slightly better than the TAEF model. The proposed method was able to 
adjust the time phase distortions of all analyzed time series (the prediction generated by the 
out-of-phase matching hypothesis is not delayed with respect to the original data), while the 
MLP model and MRL model were not able to adjust the time phase. This corroborates with 
the assumption made by Ferreira [15], where he discusses that the success of the phase fix 
procedure is strongly dependent on an accurate adjustment of the prediction model 
parameters and on the model itself used for prediction. 

7. Conclusions 
This work presented a new approach, referred to as Morpological-Rank-Linear Time-lag 
Added Forecasting (MRLTAEF) model, to overcome the RW dilemma for financial time 
series forecasting, which performs an evolutionary search for the minimum dimension to 
determining the characteristic phase space that generates the financial time series 
phenomenon. It is inspired on Takens Theorem and consists of an intelligent hybrid model 
composed of a Morpological-Rank-Linear (MRL) filter combined with a Modified Genetic 
Algorithm (MGA), which searches for the minimum number of time lags for a correct time 
series representation and estimates the initial (sub-optimal) parameters of the MRL filter 
(mixing parameter (λ), rank (r), linear Finite Impulse Response (FIR) filter (b) and the 

Morphological-Rank (MR) filter (a) coefficients). Each individual of the MGA population is 
trained by the averaged Least Mean Squares (LMS) algorithm to further improve the MRL 
filter parameters supplied by the MGA. After adjusting the model, it performs a behavioral 
statistical test and a phase fix procedure to adjust time phase distortions observed in 
financial time series. 
Five different metrics were used to measure the performance of the proposed MRLTAEF 
method for financial time series forecasting. A fitness function was designed with these five 
well-known statistic error measures in order to improve the description of the time series 
phenomenon as much as possible. The five different evaluation measures used to compose 
this fitness function can have different contributions to the final prediction, where a more 
sophisticated analysis must be done to determine the optimal combination of such metrics. 
An experimental validation of the method was carried out on four real world financial time 
series, showing the robustness of the MRLTAEF method through a comparison, according 
to five performance measures, of previous results found in the literature (MLP, MRL and 
TAEF models). This experimental investigation indicates a better, more consistent global 
performance of the proposed MRLTAEF method. 
In general, all generated predictive models with the MRLTAEF method using the phase fix 
procedure (to adjust time phase distortions) showed forecasting performance much better 
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than the MLP model and MRL model, and slightly better than the TAEF model. The 
MRLTAEF method was able to adjust the time phase distortions of all analyzed time series, 
while the MLP model and MRL model were not able to adjust the time phase. This fact 
shows that the success of the phase fix procedure is strongly dependent on the accurate 
adjustment of parameters of the predictive model and on the model itself used for 
forecasting. It was also observed that the MRLTAEF model reached a much better 
performance when compared with a random walk like model, overcoming the random walk 
dilemma for the analyzed financial times series. 
The models generated by the MRLTAEF method are not random walk models. This 
affirmation is shown with the phase fix procedure. If the MRL filter models were random 
walk models, the phase fix procedure would generate the same result of the original 
prediction, since in the random walk model the t+1 value is always the t value. 
It is worth mentioning that the first time lag is never selected to predict any time series used 
in this work. However, a random walk structure is necessary for the phase fix procedure to 
work, since the key of this procedure is the two step prediction (described by the phase fix 
procedure) in order to adjust the one step time phase. 
Also, one of the main advantages of the MRLTAEF model (apart from its predictive 
performance when compared to all analyzed models) is that not only they have linear and 
nonlinear components, but they are quite attractive due to their simpler computational 
complexity when compared to other approaches such as [33, 34], other MLP-GA models [15] 
and other statistical models [2-5]. 
Furthermore, another assumption made by Ferreira [15] was confirmed through the 
analyzes of the MRL filter mixing parameter (λ). It was argued that through lagplot analysis 
it is possible to notice in financial time series indicative structures of some nonlinear 
relationship among the time lags even though they are super-imposed by a dominant linear 
component. In all the experiments, the MRLTAEF model set a strong linear component 
mixed with a weak nonlinear component (it uses ~99% of the linear component of MRL 
filter and ~1% of the nonlinear component of the MRL filter). Since the MRLTAEF method 
defines a MRL filter like model, which has the ability to select the percentage of use of the 
linear and nonlinear components, it is believed that it improves the prediction performance 
through a balanced estimation of the linear and nolinear relationships. 
Future works will consider the development of further studies in order to formalize 
properties of the proposed model using the phase fix procedure. Also, other financial time 
series with components such as trends, seasonalities, impulses, steps and other 
nonlinearities can be used for the efficiency confirmation of the proposed method, as well 
as, further studies, in terms of risk and financial return, can be developed in order to 
determine the additional economical benefits, for an investor, with the use of the proposed 
method. 
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1. Introduction 
Quantum Finite State Machines (QFSM) are a well known model of computation that was 
originally formalized by Watrous [Wat95a, Wat95b, Wat97], Kondacs [KW97] and more 
generally Quantum Turing Machines (QTM) have been described by Bernstein [BV97]. In 
particular the 2-way QFSM have been shown to be more powerful than classical FSM 
[KW97]. Thus the interest in quantum computational models of automata and machines is 
not only theoretical but has also possible applications realization of future quantum 
computer and robotics controllers. 
In this chapter we present the evolutionary approach to the synthesis of QFSM’s specified 
by a quantum circuits. This approach was originally proposed by [LP09] and is possible on 
yet only theoretical basis. In particular this approach requires a selective qubit-initialization 
in a quantum register. In contrast the current methodology and approaches to practical 
Quantum Computation, the current practical realization of quantum computation always 
starts with the initialization of the whole quantum register and terminates by the 
measurement of either all of the qubits or by the measurement of a given subset of qubits. 
Moreover in general there is no reuse of any element of the quantum register. 
In this text we analyze in details what type of QFSM can be successfully synthesized. 
The evolutionary approach will evaluate the results based on both the correctness and the 
cost of the evolved machines. Multiple parameters such as type of error evaluation, 
synthesis constraints and evolutionary operators will be discussed when evaluating to the 
obtained results. 
In particular we show how to synthesize QFSMs as sequence detectors and illustrate their 
functionality both in the quantum world and in the classical (observable) world. The application 
of the synthesized quantum devices is illustrated by the analysis of recognized sequences. 
Finally, we provide analytic method for the used evolutionary approach and we describe 
the experimental protocol, and its heuristic improvements. We also discuss the results. In 
addition, we investigate the following aspects of the Evolutionary Quantum Logic Synthesis: 
• Quantum probabilistic FSM and Reversible FSM. 
• Hardware acceleration for the Fitness evaluation using CBLAS [cbl] and using CUBLAS 

[cud] (CUDA[cud] implemented Basic Linear Algebra Subprograms (BLAS)[cbl] 
subroutines). 
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2. Background in quantum computing 
In Quantum Computing the information is represented by a Quantum Bit also called qubit. 
The wave equation is used to represent a qubit or a set of them. Equation 1 shows a general 
form in the Dirac notation. 

 
(1) 

In Dirac notation |⋅〉 represents a column vector, also called a ket. The bra element denoted 〈⋅| 
stands for hermitian conjugate. In this manner a bra-ket 〈⋅|⋅〉 represents the inner, dot-vector 
product while |⋅〉〈⋅| represents the outer vector product. The general equation (1), 

 can be written as  and is 
the probability of observing the state |0〉 while  is the probability of observing |1〉. 
In general, to describe basis states of a Quantum System, the Dirac notation is preferred to 
the vector-based Heisenberg notation. However, Heisenberg notation can be more practical 
to represent the exponential growth of the quantum register. Let two orthonormal quantum 
states be represented in the vector (Heisenberg) notation eq. 2. 

 

(2) 

Different states in this vector notation are then multiplications of all possible states of the 
system, and for a two-qubit system we obtain (using the Kronecker product[Gru99, Gra81, 
NC00]) the states represented in eq. 3: 

 

(3) 

The Kronecker product exponentially increases the dimension of the space for matrices as well: 

 

(4) 

This tensor product operation for a parallel connection of to wires is shown in Figure 1. 
Assume that qubit a (with possible states |0〉 and |1〉) is represented by  
and qubit b is represented by . Each of them is represented by the 
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Fig. 1. Circuit representing the W ⊗X operation 

superposition of their basis states, but put together the characteristic wave function of their 
combined states will be: 

 
(5) 

with αa and βb being the complex amplitudes of states of each EP respectively. As shown 
before, the calculations of the composed state used the Kronecker multiplication operator. 
Hence comes  the possibility to create quantum memories with extremely large capacities 
and the requirement for efficient methods to calculate such large matrices. 
Quantum Computation uses a set of Quantum properties. These are the measurement, the 
superposition and the entanglement. First, however, the principles of multi-qubit system 
must be introduced. 

2.1 Multi-Qubit System 
To illustrate the superposition let’s have a look at a more complicated system with two 
quantum particles a and b represented by  and  
respectively. For such a system the problem space increases exponentially and is 
represented using the Kronecker product [Gru99]. 

 

(6) 

Thus the resulting system is represented by  
 (5) where the double coefficients obey the unity (completeness) rule and 

each of their powers represents the probability to measure the corresponding state. The 
superposition means that the quantum system is or can be in any or all the states at the same 
time. This superposition gives the massive parallel computational power to quantum 
computing. 

2.2 Entanglement and projective measurements 
Assume the above two-particle vector  (two-qubit quantum system) is transformed using 
the quantum circuit from Figure 2. 
This circuit executes first a Hadamard transform on the top qubit and then a Controlled-Not 
operation with the bottom qubit as the target. Depending on the initial state of the quantum 
register the output will be either  . 
Thus it is not possible to estimate with 100% probability the initial state of the quantum 
register. 
Let   at level a (Figure 2). The first step is to apply the [H] gate on the qubit-a and 
the resulting state at level b of the circuit is 
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Fig. 2. EPR producing circuit 

 

(7) 

Next the application of the CNOT gate results in: 

 

(8) 

For an output 0 (on the qubit-a), the projective measurement of the first (topmost) qubit 
(qubit-a on Figure 2) on this stage would collapse the global state (with a single 
measurement) to the state |00〉: 

 
(9) 

with 

 

(10) 

and 
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(11) 

Similarly, the probability of measuring output on the qubit-a in state |0〉 is: 

 

(12) 

If one would look to the output of the measurement on the second qubit (qubit-b), the 
probability for obtaining |0〉 or |1〉 is in this case the following: 

 

(13) 

Thus the expectation values for measuring both values 0 or 1 on each qubit independently 
are  . 
If however one looks on the second and non-measured qubit (if the qubit-a is measured, it is 
the qubit-b, and vice versa) and calculates the output probabilities, the output is 
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contradictory to the expectations given by standard probabilistic distribution such as a coin 
toss q = 1 − p. To see this let’s start in the state 

 

(14) 

and measure the qubit-a and obtain a result. In this case assume the result of the 
measurement is given by: 

 

(15) 

Then measuring the second qubit (qubit-b) will not affect the system because the 
measurement of the qubit-a has collapsed the whole system into a single basis state: 

 (16) 

The probability for obtaining a |1〉 on the qubit-b is thus 0 and the measurement on qubit-b 
(after having measured qubit-a) has no effect on the system at all.  The states of qubits are 
thus correlated. This non-locality paradox was first described by Einstein-Podolsky-Rosen 
work[EPR35] and is known as the EPR paradox. This particular phenomenon is one of the 
most powerful in quantum mechanics and quantum computing, as it allows together with 
superposition the speedup of finding solutions to certain types of problems. Finally, it can 
be noted that mathematically, the entangled state is such that it cannot be factored into 
simpler terms. For example, the state  and thus it can be factored. 
However, the states as those introduced in eq. 15 cannot be transformed in such a manner 
and are thus entangled; physically implying that they are related through measurement or 
observation.  

2.3 Single-Qubit quantum gates 
We are now concerned with matrix representation of operators. The first class of important 
quantum operators are the one-qubit operators realized in the quantum circuit as the one-
qubit (quantum) gates. Some of their matrix representations can be seen in equation 17. 

 

(17) 

Each matrix of an Operator has its inputs from the top (from left to right) and the outputs on 
the side (from top to bottom). Thus taking a state  (eq.18) and an unitary operator H (eq. 19) 

 (18) 
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(19) 

the result of computation is represented in equation 20. 

 
(20) 

 

(21) 

Equation 21 shows the inputs (input minterms) on the top of the matrix and the output 
minterms on the left side. Thus for an input |10〉 (from the top) the output is |11〉 (from the 
side). 

2.4 Multi-Qubit quantum gates 
The second class of quantum gates includes the Controlled-U gates. Schematic 
representation of such gates can be seen in Figure 3. Gates in Figure 3a – Figure 3c represent 
the general structures for single-control-qubit single-qubit gate, two-control-qubit single-
qubit gate, single-control-qubit two-qubit gate and two-control-qubit two-qubit gate 
respectively. The reason for calling these gates Controlled is the fact that they are based on 
two operations: first there is one or more control bits and second there is a unitary 
transformation similar to matrices from equation 17 that is controlled. For instance the 
Feynman gate is a Controlled-NOT gate and has two input qubits a and b as can be seen in  
 

 
Fig. 3. Schematic representation of Controlled-U gates: a) general structure of single-qubit 
controlled-U gate (control qubit a, target qubit, b) two-qubit controlled, single-qubit 
operation, c) single-qubit controlled, two-qubit target quantum gate, d) Feynman (CNOT), 
e) Toffoli (CCNOT), f) Fredkin. a, b, c are input qubits and a’, b’ and c’ are respective 
outputs. 
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Figure 3. Its unitary matrix with input and output minters is shown in eq. (21). Thus qubits 
controlling the gate are called the control qubits and the qubits on which the unitary 
transform is applied to are called the target qubits. 
Figures 3d - Figure 3f represent special cases where the controlled unitary operator is Not, 
Not and Swap, respectively. The respective unitary matrices are in equations 21, 22a and 
22b. 
Equation 21 shows that if the input state is for instance |00〉 (from the top) the output is 
given by . Similarly for all other possible input /output 
combinations. 

(a) (b) 

 

(22) 

The Controlled-U gate means that while the controlled qubit a is equal to 0 the qubits on 
output of both wires are the same as they were before entering the gate (a’ = a, b’ = b). Now 
if qubit a equals to 1, the result is a’ = a and b’ = ¬b according to matrix in equation (17.a). It 
can be easily verified that the CCNOT (Toffoli) gate is just a Feynman gate with one more 
control qubit and the Fredkin gate is a controlled swap as shown on Figure 3. 
A closer look at equations (21 and 22) gives more explanation about what is described in eq. 
21: CNOT, eq. 22a : Toffoli and eq. 22b : Fredkin gates. For instance, equation 21 shows that 
while the system is in states |00〉 and |01〉 the output of the circuit is a copy of the input. For 
the inputs |10〉 and |11〉 the second output is inverted and it can be seen that the right-lower 
corner of the matrix is the NOT gate. Similarly in the other two Controlled gates the NOT 
gate matrix can be found. 

2.5 NMR-based quantum logic gates 
The NMR (Nuclear Magnetic Resonance) technology approach to quantum computing 
[Moo65, PW02, DKK03] is the most advanced quantum realization technology used so far, 
mainly because it was used to implement the Shor algorithm [Sho94] with 7 qubits [NC00]. 
Yet other technologies such as Ion trap [DiV95], Josephson Junction [DiV95] or cavity QED 
[BZ00] are being used. The NMR quantum computing has been reviewed in details in 
[PW02, DKK03] and for this paper it is important that it was so far the NMR computer that 
allowed the most advanced algorithm (7 qubit logic operation) to be practically realized and 
analyzed in details. Thus it is based on this technology that the constraints of the synthesis 
are going to be established for the cost and function evaluation. Some prior work on 
synthesis has been also already published [LLK+06] and few simple cost functions have been 
established. 
For the NMR-constrained logic synthesis the conditions are: 
• Single qubit operations: rotations Rx,Ry,Rz for various degrees of rotation θ. With each 

unitary rotation (Rx, Ry, Rz) represented in equation 23 
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(23) 

• Two-qubit operation; depending on approach the Interaction operator is used as Jzz or 
Jxy for various rotations θ 

Thus a quantum circuit realized in NMR will be exclusively built from single qubit rotations 
about three axes x,y,z and from the two-neighbor-qubit operation of interaction allowing to 
realize such primitives as CNOT or SWAP gates. Examples of gates realized using NMR 
quantum primitives are shown in Figure 5 to Figure 8. 
 

 
Fig. 4. Structure of the Toffoli gate 
 

 
Fig. 5. Single pulse Logic gate – NOT 
 

 
Fig. 6. Two-pulses logic gate – Hadamard 
 

 
Fig. 7. Detailed Realization of Feynman Gate with five EM pulses. 
 

 
Fig. 8. Five-pulses logic gate - Controlled-V 

Also, the synthesis using the NMR computing model using EM pulses, is common to other 
technologies such as Ion Trap [CZ95, PW02] or Josephson Junction [BZ00]. Thus the cost 
model used here can be applied to synthesize circuits in various technologies, all of these 
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technologies having the possibility to express the implemented logic as a sequence of EM 
pulses. 

3. Quantum finite state machines 
The paradigms of quantum circuits from Section 2 are applied in this paper to the synthesis 
of computational models such as QFSM as defined in [LPK09]. This section briefly 
introduces the knowledge about Quantum computational models and their properties as 
well as specifies the types of devices that are going to be synthesized. We describe the 1-way 
Quantum Finite State Machines (FSM) from both the theoretical (computational) point of 
view as well as from the engineering (circuit) point of view. Most of the work in this area is 
still on the theoretical level but the proofs of concept quantum devices [Dun98, SKT04, 
MC06, RCHCX+08, YCS09] allow to speculate that such models will be useful for quantum 
logical devices that will appear in close future. 

3.1 1-way quantum finite automata 
Quantum Finite State Machines (QFSM) are a natural extension of classical (probabilistic) 
FSM’s. Two main types of QFSM are well known: One-way QFSM (1QFSM) [AF98, MC00] 
and two-way QFSM (2QFSM)[AW02, KW97]. As will be illustrated and explained the 
1QFSM, can accept sequentially classical input, quantize it, process it and measures its 
quantum memory after each operation (Figure 9). In this work the focus is on the synthesis 
of the 1QFSM from Figure 9(b). From now on the general designation of QFSM will refer to 
1QFSM in this work. Other type of described QFSMs will be specifically named. 
 

 
Fig. 9. Schematic representation of a 1QFSM; (a) after each  computation step the machine 
state is measured, (b) after each computation step the output is measured, (c) after each 
computational step the machine state and the output state are measured. 

In contrast to that, the 2QFSM is designed to operate on quantum input data (allowing to 
put the reading head in superposition with the input tape, and requiring all the input data 
to be present at once for the maximum efficiency) and the measurement is done only at the 
end of a whole process. 
Definition 3.1 
Quantum State Machine - a QFSM is a tuple Γ = {Q,Λ, q0,Qac,QrjI , δ}, where Q is a finite set 
of states, σ is the input alphabet, δ is the transition function. The states q0 ∈ Q′, Qac ⊂ Q and 
Qrj ⊂ Q are the initial states, the set of accepting states and the set of rejected states, 
respectively.                                                                                                                                            
The QFSM machine action maps the set of machine states and the set of input symbols into 
the set of complex machine next states. The computation of such machine is required to be 
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done using unitary operators and is performed on the basis set Bq
 using unitary operators 

Uθ, θ ∈Θ. In particular the QFSM uses a set of Unitary Operators corresponding to the input 
of input characters on the input tape. Thus for a given string to be processed and prior to the 
whole process termination (string either accepted or rejected), the overall processing can be 
represented as: 

 (24) 

with M  being the application of the  operator to the current state and creating the 
configuration |q〉 followed by the measurement of the current state M (projecting the 
state into G). 
The 1QFSM was proven to be less powerful or equally powerful to its classical counterpart 
1FSM [Gru99, KW97] in that it can recognize the same classes of regular languages as the 
classical FSM can recognize. 
The above described 1QFSM is also called the measure-many quantum finite automaton 
[KW97]. A model called measure-once quantum finite automata was also introduced and 
studied by Moore [MC00]. The measure-many 1QFSM is similar to the concepts of the 
2QFSM. For comparison we illustrate the main differences between the 1QFSM and 2QFSM 
below. 
Example 3.1.1 1QFSM 
Let be two possible states (including the accepting and rejecting states) of a 
single-qubit machine M and with transition functions specified by the transitions defined in 
eq. 25 corresponding to the state diagram in Figure 10a. 
 

 
Fig. 10. (a) State transition diagram for the 1QFSM defined by the transition function 25, (b) 
the representation of the QFSM using quantum multiplexers. Observe two control outputs 
|q 〉 specifying the machine action/states and the input symbols selecting the appropriate 
unitary transform Vλ for λ ⊂ {#, $, 0, 1}. 
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(25) 

The machine M, specified in eq. 25 represents a state machine that uses the H gate when the 
input is 0 (V0 = H) and the Pauli-Z rotation gate when the input is 1 (V1 = Z). Observe that 
machine M would have different behavior for measure-once and measure-many 
implementation. In the measure-many case, the machine generates a quantum coin-flip 
while receiving input 0 and while receiving input 1 the Pauli-Z rotation is applied. Observe 
in the measure-once case, that for example for the string input θ = ”010” the many-measure 
machine will implement a NOT using [H][Z][H].                                                                            
Note that in this approach to QFSM each input symbol λ∈{#, $, 0, 1} is represented by a 
unitary transform that can be seen as shown in Figure 10.  No measurement is done here on 
|q〉 while the sequence of quantum operators is applied to this state. The 2QFSM operates on a 
similar principle as the 1QFSM model but with the main difference being the application of the 
measurement. This is schematically shown in Figure 11 for the completeness of explanation. 
 

 
Fig. 11. Schematics representing the difference between the 1QFSM and 2QFSM. On the top, 
the 1QFSM - for each input character read from left to right from the tape, a unitary 
transform U is applied on the state and the state is measured. On the bottom, the 2QFSM 
moves on the input tape left and right, the unitary transform U is applied on the state and 
only once the computation is terminated the final state is observed/measured. 
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3.2 Quantum logic synthesis of sequence detectors 
The problem to synthesize the QFSM is to find the simplest quantum circuit for a given set 
of input-output sequences thus letting the state assignment problem for this machine be 
directly solved by our synthesis algorithm. This direct synthesis approach can be applied to 
binary, multiple-valued and fuzzy quantum machines with no principle differences - only 
fitness functions are modified in an evolutionary algorithm [LPG+03, LP05]. 
Let us assume that there exists a sequential oracle that represents for instance Nature, robot 
control or robot’s environment. In our example this oracle is specified by a state diagram in 
Figure 12a. This oracle can represent partial knowledge and a deterministic or probabilistic 
machine of any kind. Assume that there is a clearing signal (denoted by an arrow in Figure 
12a) to set the oracle into its initial state. By giving initial signals and input sequences and 
observing output sequences the observer can create a behavior tree from Figure 12b. 
 
 

 
 

Fig. 12. Example of a deterministic oracle and its diagnostic tree. 

As in general this oracle is never fully known, we perform experiments with it to determine 
some of its input-output behaviors. Assume that the oracle from Figure 12a is represented 
by the sequences from the experiments. These input-output sequences are shown in eq. 26 
with |iqo〉 represents the input qubit, the state qubit and the output qubit respectively. 
Observe that the diagnostic tree form Figure 12(b) shows the state with {a, b} and the inputs 
and the outputs as 0 and 1. 



 New Achievements in Evolutionary Computation 

 

90 

 

(26) 

As the full knowledge of the oracle is in general impossible - the oracle is approximated by 
sets of input-output sequences and the more such sequences that we create - the more 
accurate characterization of the oracle as a QFSM can be created. 
The overall procedure for the detection of a sequence of length j can be summarized as 
follows: 
1. Initialize all qubits of the quantum register to the initial desired state, 
2. repeat j times: 

a. Initialize the input qubit to a desired state and set the output qubit to |0〉 
b. Apply the quantum operator on the quantum register of the QFSM 
c. Measure the output qubit and observe the result 

Using the procedure describe above one can synthesize quantum circuits for oracles being 
well known universal quantum gates such as Fredkin. The input-output sequences found 
from this oracle are next used to synthesize the QFSM from Figure 13a. Figure 13b shows 
the state-diagram of the machine. 
 

 
Fig. 13. Example of implementation of Fredkin gate as a quantum FSM of first class. Observe 
the notation where |i〉 is the input, |q〉 is the machine state and |o〉 is the machine output. 
We will call the machine in Figure 13(a) the QFSM of the first class. This is because both the 
output and the input qubits are initialized after each computation. Observe that it is 
represented with feedback lines as in Figure 9 with input and output being initialized for 
each input and the state initialized only once - at the beginning of the computation. The 
interested reader can read more on this representation in [LP09], however it is important to 
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understand that the feedback lines are shown here only as the equivalent notation to the 
classical FSM as in Figure 9. The circuit-based approach to QFSM does not require this 
notation as this ”loop” is represented by the fact that the quantum qubit preserves its state 
[LP09]. 
A set of input-output sequences defining partially the "Fredkin QFSM" is represented in eq. 27. 

 

(27) 

A class two QFSM has in turn the initialization In applied only to the input qubit. This way 
the generated sequence is now expressed not only as a function  but rather as 

. This means that now the output is directly dependent also on the previous 
output state. This QFSM of the second class is shown in Figure 14. The difference between 
the QFSM of the first and of the second class can be seen on the output qubit   where in 
the case of the QFSM of the first class the initialization  means the initialization of the 
output at each computation step while the class two QFSM uses  initializes the output 
only once, at the beginning of the computation. 
 

 
Fig. 14. Example of implementation of Fredkin gate as a quantum FSM of second class 
where the output is initialized only once and the measurement is done either after each 
input or only completely at the end. 

For instance, a class two QFSM constructed from a  "Fredkin oracle" differs from the class by 
different possible state transition. This is shown in Table 1. The first column represent the 
current state of the quantum register build from the input, state and output qubits |iqo〉. The 
second column shows the state transitions of the class one QFSM. Observe that as the output 
qubit is always being initialized to |0〉 only four possible initial states exists (see eq. 27). The 
third column representing the state transitions of the class two QFSM and as can be seen in 
this case the state transition function is the full  "Fredkin oracle" function. 
Moreover, the difference between the first and the second class of these QFSM’s has also 
deeper implications. Observe that the QFSM presented in this paper, if implemented 
without the measurement on the output and the input qubit (the measurement is executed 
only after l computational steps) the QFSM becomes the well-known two-way QFSM 
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Table 1. Comparison of the state transition between the class one and class two QFSMs 

[KW97] because the machine can be in superposition with the input and the output. This is 
equivalent to stating that the reading head of a QFSM is in superposition with the input tape 
as required for the time-quadratic recognition of the {anbn} language [KW97]. 
Observe that to represent the 1-way and the 2-way QFSM in the circuit notation the main 
difference is in the missing measurement operations between the application of the different 
CU (Controlled-U) operations. This is represented in Figures 15 and 16 for 1-way and the 2-
way QFSMs, respectively. 
 

 
Fig. 15. Example of circuit implementing 1-way QFSM. 
 

 
 

Fig. 16. Example of circuit implementing 2-way QFSM. 

An interesting example of QFSM is a machine with quantum controls signals. For instance a 
circuit with the input qubit in the superposition generating the EPR quantum state [NC00] is 
shown in Figure 17. 
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Fig. 17. Example of the EPR circuit used as a QFSM. 

Observe the behavior of this QFSM as both class one and class two machine given in Table 2. 
In this case the distinction between the class one and class two machines is negligible 
because any measurement of the system collapses the whole system as the result of the 
entanglement present in it. 
 

 
Table 2. Comparison of the state transition between the class one and class two EPR circuit 
QFSM 

Figure 17 shows that because of the entanglement this machine has two distinct possible 
recognizable sequences. When the machine uses exclusively the output qubit initialized to 
|0〉 the possible initial states are only |00〉 and |10〉 because the measurement of the output 
state resulting in  and . 

4. Evolutionary algorithms and quantum logic synthesis 
In general the evolutionary problem solving can be split into two main categories; not 
separated by the methods that each of the trends are using but rather by the problem 
representation and by the type of problem solved. On one hand, there is the Genetic 
Algorithm (GA) [Gol89, GKD89] and Evolutionary strategies (ES) [Bey01, Sch95] that in 
general represents the information by strings of characters/integers/floats and in general 
attempts to solve combinatorial problems. On the other hand the design of algorithms as 
well as state machines was traditionally done by the Genetic Programming (GP) [Koz94, 
KBA99] and the Evolutionary Programming (EP) [FOW66, ES03]. 
Each of this approaches has its particular advantages and each of them has been already 
more or less successfully applied to the Quantum Logic synthesis. In the EQLS field the 
main body of research was done using the Genetic Programming (GP) for the synthesis of 
either quantum algorithms and programs [WG98, Spe04, Lei04, MCS04] or some specific 
types of quantum circuits[WG98, Rub01, SBS05, SBS08, LB04, MCS05]. While the GP 
approach has been quite active area of research the Genetic Algorithm approach is less 
popular and recently only [LP08, YI00] were using a Genetic Algorithm for the synthesis of 
quantum circuits. However, it was shown in [LP09] that it is also possible to synthesize 
quantum finite state machines specified as quantum circuit using a GA. The difference 
between the popularity of the usage between the GP and the GA for EQLS is mainly due to 
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fact that the problem space of quantum computing is not well known and is extremely large. 
Thus synthesizing quantum algorithms or circuits using the circuit approach (as in GA) can 
be much harder than using a rule-based or a program based approach (as in GP). Thus one 
could conclude that the GP approach deals only with the required information 
(programming, logic rules, relations) while the GA circuit based approach synthesize the 
overall unitary operator without any regards to the structure of the required information 
itself. 

5. Genetic algorithm 
A Genetic algorithm is a set of directed random processes that make probabilistic decisions - 
simulated evolution. Table 3 shows the general structure of a GA algorithm used in this 
work and this section follows this structure with the focus on the information encoding in 
the individuals and on the evaluation of the designed QFSMs  that are created by the GA. 
 

 
Table 3. Structure of a Genetic Algorithm 

5.1 Encoding/Representation 
For quantum logic synthesis the representation that we use is based on the encoding 
introduced in [LPMP02]. This representation allows to describe any Quantum or Reversible 
circuit [LPG+03, LP02]. All individuals in the GA are strings of ordered characters (each 
character representing a quantum gate) partitioned into parallel Blocks (Figure 18). Each 
block has as many inputs and outputs as the width of the quantum array (five in the case 
 

 
Fig. 18. Transformation of a QC from the chromosome (on the top) encoded string, to a final 
quantum circuit notation representation of this QC (on the right). Here SW is a Swap gate, H 
is a Hadamard gate and I is a Identity. In the middle there is one CCNOT (Toffoli) gate. 
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of Figure 18). The chromosome of each individual is a string of characters with two types of 
tags. First a group of characters is used to represent the set of possible gates that can be used 
in the individual string representation. Second, a single character ’p’ is used as a separator 
between parallel blocks of quantum gates. An example of a chromosome can be seen in 
Figure 18. In this encoding each space (empty wire or a gate) is represented by a character 
with appropriate decoding shown. Our problem-specific encoding was applied to allow the 
construction of as simple genetic operators as possible. The advantage of these strings is that 
they allow encoding of an arbitrary QL or RL circuit without any additional parameters. 
Several such parameters were used in previous research [LPG+03, LP05] and using them 
made the genetic algorithm more complicated. Please note that only the possibility to move 
gate characters, remove and add them to the chromosome consequently make it possible to 
construct an arbitrary circuit and also to modify this circuit in order to optimize it. 

5.2 Initialization steps of GA 
The GA requires an input file (c.f. Pseudo-Code 28 and Pseudo-Code 29) which specifies all 
input parameters and required settings. 

 

(28) 

However, for the clarity of explanation we focus only on particular settings required for the 
synthesis of the QFSM. The lines (20-38) shows the to search for a QFSM recognizing a 
sequence, first the measurement is required (line 20), the index of the output qubit is given 
(line 21) and finally the desired input sequence is given. This is done by both specifying the 
input value (here 0 or 1) and the probability of detection (here 1). Observe that the 
probabilities are specified as complex numbers with only the real component defined, e.g. 
(1,0). The use of complex coefficients for these observation probabilities is due to the fact 
that as in our previous work [LP05, Luk09] it allows to specify don't cares. For instance the 
coefficient (0,1) represents a logical don't care. 
The GA has several other settings, (common to most of GA methods) but also requires to 
specify circuit specific parameters. The initial circuits are created with a random size within 
the interval specified by a maximal (tmax) and minimal number of segments (tmin) in each 
individual (chromosome). Thus the size of the chromosome is not limited during the 
lifetime of an individual to a precise value, rather each individual has a dynamically 
changing genome within the bounds defined by the above variables. The presented GA is a 
subclass of the Messy GA [GKD89]. 
Another important parameter is related to the cost of the implemented Quantum Circuit. 
Each evolutionary run has specified the minimal cost MinCost that represents the known 
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minimum for the target function or device. If such minimal value is not known, a small 
value is used so that it always underestimates a possible minimal cost of the 
implementation. This circuit cost value is used in the cost function described in Section 5.4.1. 

 

(29) 

The input specifications also include the elementary quantum gates to be used as 
components, like the single qubit H, X, Y, Z or V gates and two qubit operations such as 
CNOT or CV, which are the building blocks of the quantum circuits to be found. The 
quantum gates are represented as quantum unitary (and Hermitian) matrices with the cost 
specified for each gate. This is shown in eq. 29, where for each input gate the number of 
wires and its cost is given as well. For instance, lines 66 to 69 in eq. 29 shows the unitary 
matrix of the CV gate[BBC+95], line 64 shows the number of qubits of this gate and the line 
65 shows its cost. 
Observe that each unitary matrix is specified by complex coefficients with real and 
imaginary component. For instance (1, 0) represents the real state while (0.5, 0.5) represents 
a complex state with coefficient  . 
In the presented experiments various sets of Quantum gates have been used but only the 
most succesful runs are presented. In particular only circuits with the most common gates 
are shown. These gates include single-qubit gates such as Pauli rotations, the V and V† gates, 
two-qubit gates such as CNOT, CV and CV† and three-qubit macros such as Toffoli gates. 

5.3 Evaluation of synthesis errors in sequential quantum circuits 
In order to properly evaluate a a QFSM for sequence detection the measurement operation 
must by applied on several occasions during the detection procedure. As was explained in 
the section 2, a quantum system must be measured in order for the information to be 
obtainable and readable in the macro world. Moreover, the measurement is a vital operation 
if one desires to reuse a quantum state. Recently, it was proven that a unknown quantum 
state cannot be completely erased [PB99] but is also easily understandable by observing the 
nature of the quantum computing. 
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The simplest explanation of the impossibility of completely erase an unknown state is due to 
the fact that there is no such a reversible quantum operation that would bring any quantum 
state to let’s say the |0〉 state. This is because every reversible operation is a permutation 
(even when it contains complex coefficients) and any operation that would achieve such a 
state reduction is inherently non reversible and by default non-quantum. An example of 
such non-reversible operation is shown in eq. 30. 

 
(30) 

Thus measuring a quantum state allows to determine its observable and consequently 
allows to apply a Unitary transformation that would generate the desired state. The model 
of computation for Quantum Finite State Machines proposed in [LPK09] is used here as 
model. Figure 19 shows steps of evaluation of a sequential Quantum Circuit. Observe that 
this QFSM has one qubit |q〉 for state, one qubit |i〉 for input and one qubit |o〉 for output. 
From the classical point of view this can be seen as an instance of a Mealy finite state 
machine. 
The synthesis process generates a unitary transformation matrix U, that during the 
evaluation is applied to the sequence of quantum states. Observe that both the input qubit 
and the output qubit must be measured in order to preserve a valid quantum state qubit |q〉 
as well as allow to properly restore both the input and the output qubit. After each iteration of 
the computation (application of the U operator) the output qubit is set to |0〉 while the input 
qubit is set to either |0〉 or |1〉 depending on the the user specifications from the input file. 
Equation 31 shows the first and the last step of the QFSM evaluation for the detection of the 
input sequence starting with s = {10011001110001}. Note that the detection requires that for 
all the input values but the last one the output qubit is set to |0〉 and is set to |1〉 for the last 
character. 

 

(31) 



 New Achievements in Evolutionary Computation 

 

98 

At the end of each evaluation sequence, the state of the output qubit and of the input qubit 
is determined by the measurement and can be reset with desired Unitary transformation to 
either |0〉 or to |1〉. The machine state qubit |q〉 is known only at the beginning of each 
evaluation sequence. This means that the state of the qubit can be in superposition or an 
orthonormal state. This also means that the machine state can be a multi qubit state that can 
become entangled between the various state qubits. 
 

 
Fig. 19. Schematic representation of the process of evaluation of a QC as a Measure-Many 
(one-way )QFSM in this work. 

Finally, the evaluation process is recored as a set of probabilities denoted as p0(0) and p0(1). 
They represent the probability of observation of the desired output 0 or 1 during the 
sequence detection. In particular, in this case the overall correctness of the detection can be 
written as: 

 

(32) 

To evaluate the error of the detector either the eq. 32 was used as a direct measure (it 
represents the correctness of the detection with respect to the selected observables), or a 
more standard calculation was used. The eq. 33 shows the standard RMS error computation. 
Both of these error evaluations are compared in the experimental section of this work. 

 

(33) 

5.4 Fitness functions of the GA 
During the search for the QFSM’s a parameterized fitness function was used. This was done 
in order to allow the minimization for both the error and the cost of the synthesized 
Quantum circuit. This "weighted function" methodology was based on our previous 
experience in the evolutionary quantum Logic synthesis [LPG+ 03, LP05, LP09]. 
The parameterization allows to select the weight with which the error of the circuit and the 
cost of the circuit modifies the overall fitness value. The choice of this weight is left on the 
user that can decide what criteria of evaluation is more important. However, we 
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experimentally determined some optimal settings that allowed correct circuits with minimal 
cost to be synthesized. 

5.4.1 The cost function 
The cost function is based on a parameter known as the minimum cost that is provided by the 
user and that permits to estimate a normalization constant. This means that the cost function 
acts as a bonus inversely proportional to the size of the circuit to the fitness function for a 
given estimated and unreachable minimum. In this work the cost function is defined by 

 
(34) 

where Mincost is the parameter given by the user and Cost, given by , is the sum of 
costs of all gates in the evolved circuit. Equation 34 was experimentally determined to be 
sensitive enough to influence both circuits far and close to the optimal cost. 

5.4.2 The weighted fitness function 
The weighted fitness functions used is shown in eq. 35 and an alternative version is in eq. 
36. Both equations calculate the fitness value using the fitness function and the cost function 
together. In this case, the error of the circuit (QFSM) is calculated with respect to the overall 
probability of detecting the desired sequence as specified by eq. 32. 
Each component of these weighted functions can be adjusted by the values of parameters α 
and β. 

 (35) 

 
(36) 

The reasons for these various fitness functions are the following: 
• to allow different selection pressures during the individual selection process, 
• by calibrating the cost to always underestimate the minimal possible size of the desired 

circuit it is possible to further manipulate the selection process. 
• the parameterization allows in the extreme cases to completely eliminate the cost 

component and thus also includes fitness functions solely based on the correctness of 
the circuit. 

For instance the fitness function 35 is not equal to one, unless both the cost of the circuit and 
the error are minimal. Thus a GA using such a weighted function has more freedom for 
searching a solution, because the fitness function is now optimizing the circuit for two 
parameters. Similarly in the case of the fitness function 36 which decreases the value of the 
fitness of longer circuits, therefore preferring the shorter ones. Thus individuals with 
different circuit properties will have equal fitness value. 

5.5 Other evolutionary settings 
For the clarity and the focus of this paper we present the rest of the settings in the Table 4. 
Only the final parameters are shown and in particular only those that were used during the 
runs that generated the presented results. To sum it up, the SUS[Bak87] selection method 
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was used with n = 4 individuals. The mutation operator was used both on the level of 
individual quantum gates but also on the level of the parallel blocks. The crossover was a 
two parent, two point recombination process that preserves the width of the quantum 
circuit by selecting cut points only between the parallel blocks. 
 

 
Table 4. Parameters of the GA used during the experiments. 

5.6 CUDA acceleration 
The CUDA framework was developed by NVIDIA for the growing usage of the GPU for 
computing tasks. The acceleration implemented in the GA is restricted only to the matrix 
calculation. Figure 20 shows where the CUDA acceleration is used. 
 

 
 

Fig. 20. Schema representing the usage of the CUDA accelerator in the computation of a 
Quantum Circuit Matrix Representation. 

The reason for using the accelerated matrix multiplication only during the matrix 
multiplication and not for the Kronecker matrix product is the fact that the Kronecker 
product is less computationally expensive as it requires only 2n ×2n multiplications while the 
matrix product requires 2n×2n multiplications and 2n additions. Moreover, in order to 
maximize the CUDA usage it is more optimal to use multiplication on matrices of the same 
dimensions without requiring to re-parameterize the CUDA device. This is the case in the 
matrix multiplication between each parallel block in a Quantum Circuit. 

6. Experiments and discussion 
The experiments carried in this section confirms the possibility to design classical sequence 
detectors using the 1-way (measure many) circuit-based QFSM’s model. The 
experimentation was done over a set of random sequences of various length. Each sequence 
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was being tested for circuits with different number of state qubits. This was done in order to 
observe the role of embedding of the non-reversible sequence into a larger, reversible 
unitary matrix. 
The general function that the QFSM generates on the output is described by the eq. 37 

 
(37) 

with λ being a symbol read from the input and j is the index of the λ symbol in the 
sequence. Thus the minimal condition for each sequence to be detected properly is that the 
amount of the states is large enough to embed all the zero output to one half of the truth 
table. this is a required consequence because the QFSM must have both the output function 
and the state transition function reversible. 
The experimentation was done for 5 randomly generated binary sequences with 7, 10, 15, 20 
and 35 binary digits each. The sequences are shown in eq. 38 

 

(38) 

Each sequence was synthesized using a circuit with 3,4,5 and 6 qubits. The six qubit circuit is 
large enough to embed even the largest sequence so as a reversible function is synthesizable. 
Figures 21, 24 and 27 shows some examples of obtained circuits for each of the sequences. 
Figure 21 is an example of Quantum Circuit that was used to detect the s 7 sequence and 
does not use any probabilistic states. For the sake of understanding let us analyze the 
sequence detection procedure using this circuit. The desired sequence is s 7 = { 0 1 0 1 1 1 1 } 
thus the set of input states is given by , with 
|φ〉 being the unmeasured component of the automata state. Naturally there are cases where 
it is going to be determined by the measurement but for the clarity it is left in symbolic form 
and thus allowing it to be in superposed or entangled state. 
 
 
 

 
 
 

Fig. 21. s 7-sequence exact detector 
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The size of the QFSM is four qubits with two topmost qubits |q0〉, |q1〉 are the state qubits, 
|i〉 is the input qubit and |o〉 is the output qubit (Figure 21). Table 22 represents the 
consecutive states as obtained during the QFSM procedure described in this work (Section 
5.3). In particular this QFSM shows that it recognize the given sequence without the use of 
any probabilistic or superposed states. 
This can also be seen on the circuit matrix that can easily be build from the given sequence 
of gates. For clarity the state transition is also shown in the form of a equation (eq. 39). 
 

 
Fig. 22. Four qubits s7-sequence detector with deterministic input and output states 

 

(39) 

Observe that two different steps can be clearly distinguished in eq. 39; first a standard step 
that acts directly on a previously generated machine state such as in steps s0, s3, s4, s5 and s6, 
second a step that requires explicit modification of the previous machine state, in particular 
a state that requires an initialization of the output and/or the input qubit, such as shown in 
steps s1 to s2. Observe that this particular sequence detector does not requires - for this 
sequence – any re-initialization of the input qubit as a result of previous step; the input qubit 
is not modified by the automaton. Also observe that despite the fact that this circuit can 
generate quantum states, these states are not generated during the sequence s7. This can be 
seen on Figure 23. 
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The states in a circle represent natural states as would be obtained by the cycle of the 
reversible function, while the states in the hexagons represents forced states that are 
obtained after modifying the input qubit. The Figure 23 also represents the forced states 
with one dotted arrow incoming and one outgoing dashed arrows. The arrow incoming to 
the forced state is indexed with a binary number representing the required input change so 
that the forced state is obtained. The outgoing arrow represents that the forced state is then 
used as a normal natural state; i.e. a Unitary transform is applied to it and the result is 
computed. For instance the s1 character recognition, starts with the machine in the state 
|0000〉, which is forced to |0010〉 and then the Unitary transformation is applied and yields 
|1110〉 state. The whole sequence detection can be in this manner analysed from eq. 39 and 
Figure 23. 

 
Fig. 23. The cycle of a Reversible Circuit used as a detector for the s7 sequence 

A more interesting example is shown in Figure 24. The displayed circuit also recognizes the 
same sequence s7 but in this case the automaton uses probabilistic and superposed quantum 
states. This can be seen in Table 25; this table has every row split in half so that it fits in size. 
For more details eq. 40 shows step by step the process of recognition performed by this 
automaton. Observe that as the result of the last step the output of the circuit is |o〉 = |1 〉 
thus confirming the correct sequence has been detected. 
 

 
Fig. 24. s7-sequence detector with probabilistic and superposed states 
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(40) 

 
Fig. 25. Four qubits s7-sequence detector with probabilistic input and output states 
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6.1 Sequence detection 
The detection of a given sequence by the here formulated QFSM’s can be analyzed starting 
from Reversible Circuits. Assume, the initial state is 0000 for the rest of this discussion. As 
example take the reversible (deterministic) detector such as given in figure 21. It is obvious 
that the power of properly detecting a given sequence; i.e. to generate a sequence 0 × n + 1 × 
1 is proportional to the cycle of this detector given by the reversible circuit for a fixed n and 
to the fact of having the cycle connected to a finish sequence either by a forced change of 
input or by a natural evolution. 
To see this, just assume that the given circuit is specified by the following permutation cycle 
(0, 4, 8, 12)(2, 6, 10, 14)(1, 3, 5, 7, 9, 11, 13, 15). Clearly, the first cycle (0, 4, 8, 12) represents 
the states containing the 0 as input and 0 as output, the (2, 6, 10, 14) cycle represents the 
states having 1 for input and 0 as output and the last cycle represents all outputs having the 
output bit set to 1. The longest possible sequence this automaton can detect (without using 
the force states transitions) is of length 0 becausethe detecting cycle is disjoint from both the 
cycles identifying 0’s and 1’s. 
For illustration assume the Reversible Circuit specifying the automaton be described by 
(0,6,4,2) (8,12,10,14,1) (3,5,7,9,11,13,15) permutation cycles. This automaton will not detect 
successfully any sequence if starting from the initial state 0000. This is shown in figure 26. 
Observe that no matter the input change of any of the state of the cycle (0,6,4,2) will always 
lead back to a state from the same cycle. Thus such a machine cannot generate a 1 on the 
output when starting in the state |0000〉. 
 

 
Fig. 26. The cycle of a Reversible Circuit used as a detector 

The Figure 26 shows that in order to have a successful detector, at least one natural 
transition  or a forced transition  must lead to a cycle that 
allows to generate an output with value 1. 
Now consider an Reversible Circuit defined by the permutations given by (0, 4, 8, 12, 3) (2, 6, 
10, 14, 1) (5, 7, 9, 11, 13, 15). Such automaton now can detect any sequence that contains at 
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least four consecutive 0’s or four consecutive 1’s. To maximize the length of a given 
sequence it is possible to allow the automaton to modify also its input qubit. In that case, as 
also seen in the presented protocol in the Section 5.3, the maximal complexity of the 
detected sequence is still equal to the sequence of maximum four 0’s and four 1’s. 
The important cycles used for detection of the above specified Reversible circuit are shown 
in Figure 28. Observe that only two out of three cycles are shown as the last cycle contains 
all minterms that have 1 as output and thus can only be used as the end of sequence 
indicator. Also the cycles are shown only up to a final state. Thus for instance the state 
|0011〉 is not connected back to |0000〉 because once such state is attained the detection is 
terminated. Such specified detector will detect any sequence that terminates with four 1’s or 
four 0’s. 
 

 
Fig. 27. Quantum circuits detecting the sequences s10 to s25 
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Fig. 28. The Reversible Circuit specified by the cycles (0,4,8,12,3) (2,6,10,14,1) (5,7,9,11,13,15) 
used as a detector 

Finally observe that for a given sequence it is possible to design a detector that is either 
specified by only natural state transitions - as specified by the cycles of a reversible quantum 
function or by combining the cycle with forced transitions. The former method will always 
generate larger circuits while the later will allow more compact designs. However in the 
framework of the presented Quantum detectors these approaches are equivalent from the 
point of view of implementation. That is, at the begining of each computation cycle one need 
to know exactly the input quantum state. Thus the main adavantage in designing detectors 
with only natural state transitions resides in the fact that no initialization of the input qubit 
is required because it is set at the output of the previous computational cycle. 
To close this discussion about the detectors it is possible to synthesize detectors using both 
purely Reversible or Quantum Unitary matrix. The size of the required circuit is dependent 
on the amount of continuous 0’s or 1’s however it is not restricted by it. It is straight forward 
to imagine such sequence detector that will have only smaller cycles and still will detect 
similar sequence. This is because if the unitary transform modifies the input qubit, smaller 
cycles can be combined to detect these particular sequences. For instance Figure 29 shows a 
portion of a detector specified by a Reversible circuit. This detector will detect among others 
the sequences terminating with three 0's or two 1's.  Recall that only natural transitions are 
used for the detection procedure. Thus for instance in figure 29 |1110〉 changes to state 
|1100〉 when the input is changed from 1 to 0 and the consequent application of the Unitary 
matrix on this state generates an 1 on output. This is the final state, and it indicates that at 
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least three 0 have been successfully detected before attaining it. The interested reader is 
encouraged to read more about reversible and quantum sequence detector in [LP09, LPK09]. 
Table 5 shows the minimum number of qubits that have been experimentally obtained in 
order to properly detect the sequences studied here. The sequence s7 has a sequence of four 
1’s and a set of individual 1 and thus cannot be detected by less than circuit with 4 qubits.  

 

 
Fig. 29. The Reversible Circuit detecting sequences ending with four 0’s or four 1’s. 
 

 
Table 5. Minimum number of qubits required to detect a sequence: experimental 
observations 

The sequence s10 has two cycles at least: one with a sequence of two 1’s followed by a 0 and a 
sequence of three 0’s. It is also not possible to construct such detector on 3 qubits because 
the number of states required is at least 4 for both sequence and not counting the individual 
0’s and 1’s. Similarly other sequences can be analyzed. 
The Genetic Algorithm was run for multiple sizes for each sequence starting with three 
qubits. The search was terminated when a circuit satisfying the constraints was found and 
multiple searches were performed at the minimal width. Figure 30 shows the average of the 
Fitness value for the s7, s10 and s15 sequences. The drawings show each curve over 500 
generation cycles required for the detection of each of the sequences after which the 
maximum generation is attained. Each curve is an average of 15 runs and the most 
interesting feature is that similarly to quantum function logic synthesis the algorithm finds a 
circuit that is very close to the complete solution and then stagnates before finding a 
solution. This problem is related to both the difficulty of synthesis as well as the fact that 



Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection  

 

109 

Quantum circuit are specified by Unitary matrices in which the error is of symmetric nature. 
Such error can be seen as a step function where with each step a pair of coefficient in the 
Unitary matrix is corrected. 
Also observe how the fitness value stagnates with larger sequences with the presented qubits 
despite the fact that a solution was found for each sequence for the presented number of 
qubits. Interestingly, observe that the sequence s7 to s20 are from the same class as they have 
been identified by detectors of similar size. This goes back to the discussion above about the 
limits of a Quantum and Reversible circuit to recognize a particular class of sequences. 
 

 
Fig. 30. Figures capturing the fitness average for four sequence detectors 

7. Conclusion 
In this paper we presented a methodology and we showed some experimental results 
confirming that our approach is possible in simulated environment. Also because all 
simulated elements of the presented experiments are based on existing Quantum 
operations, the simulated detectors are Quantum-realizable.  
It is well known that the state assignment problem is a NP-complete problem [Esc93] and 
the finding a minimal State Assignment has been solved only for particular subsets of FSM’s 
[LPD95] or using Quantum computing [ANdMM08]. This problem is here naturally solved 
(without addressing it). The setup of this experimental approach automatically generates a 
state assignment such that when the detection is successful the state assignment is as well. 
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This is a natural consequence of both the fact that the machine is reversible and the fact that 
the sequence is successfully identified. 
The presented algorithm proved successful in the design of Quantum detectors. Despite the 
sequences were randomly generated the proposed approach was possible due to the 
hardware accelerated computational approach. For more details about this approach the 
reader can consult [LM09]. 
The synthesis of quantum detectors has not been completely explored and remains still an 
open issue mainly because Quantum computing implementation is not a well established 
approach. Each technology provides different possibilities and has different limitations. In 
some cases specification using Quantum circuits is the most appropriate in others 
Hamiltonians must be used. Thus one of the main remaining tasks is to completely describe 
Quantum detectors and formally define their issues related with implementation and define 
classes of circuits more approapriate for different technologies. 

8. References 
[AF98] A. Ambainis and R. Freivalds. 1-way quantum finite automata: strengths, 

weaknesses and generalizations. pages 332–341, Nov 1998. 
[ANdMM08] M.P.M. Araujo, N. Nedjah, and L. de Macedo Mourelle. Quantum-inspired 

evolutionary state assignment for synchronous finite state machines. Journal of 
Universal Computer Science, 14(15):2532–2548, 2008. 

[AW02] A. Ambainis and J. Watrous. Two-way finite automata with quantum and classical 
states. Theoretical Computer Science, 287(1):299–311, 2002. 

[Bak87] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In In 
Proceedings of the Second International Conference on Genetic Algorithms and their 
Application, pages 14–21, 1987. 

[BBC+95] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. 
Sleator, J. A. Smolin, and Weinfurter H. Elementary gates for quantum 
computation. The American Physical Society, 5:3457–3467, 1995. 

[Bey01] H.G. Beyer. The Theory of Evolution Strategies. Springer, 2001. 
[BV97] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal of 

computing, pages 1411–1473, 1997. 
[BZ00] A. Blais and A. M. Zagoskin. Operation of universal gates in a solid state quantum 

computer based on clean josephson junctions between d-wave superconductors. 
Phys. Rev. A, 61, 2000. 

[cbl] GSL CBLAS. http://www.gnu.org/software/gsl/manual/html node/GSLCBLAS-
Library.html. 

[cud] NVIDIA CUDA. http://www.nvidia.com/object/cuda learn.html. 
[CZ95] J.I. Cirac and P. Zoller. Quantum computation with cold trapped ions. Physical 

Review letters, 74(20):4091, 1995. 
[DiV95] P. DiVincenzo. Two-bit gate for quantum computation. Physical Review A, 50:1015, 1995. 
[DKK03] L.M. Duan, A. Kuzmich, and H.J. Kimble. Cavity QED and quantum-information 

processing with ’hot’ trapped atoms. Physical Review A, 67, 2003. 
[Dun98] M. R. Dunlavey. Simulation of finite state machines in a quantum computer, 1998. 
[EPR35] A. Einstein, B. Podolsky, and N. Rosen. Can quantummechanical description of 

physical reality be considered complete? Phys. Rev., 47(10):777–780, May 1935. 
[ES03] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, 2003. 
[Esc93] B. Eschermann. State assignment for hardwired vlsi control units. ACM Comput. 

Surv., 25(4):415–436, 1993. 



Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection  

 

111 

[FOW66] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence through Simulated 
Evolution. John Wiley, 1966. 

[GKD89] D.E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, 
analysis and first results. Complex Systems, 3:493– 530, 1989. 

[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. 
Addison-Wesley, MA, 1989. 

[Gra81] A. Graham. Kronecker Products and Matrix Calculus With Applications. Ellis Horwood 
Limited, Chichester, U.K., 1981. 

[Gru99] J. Gruska. Quantum computing. Osborne/McGraw-Hill,U.S., 1999. 
[KBA99] J.R. Koza, F.H. Bennett, and D. Andre. Genetic Programming III: Darwinian Invention 

and Problem Solving. San Francisco, California: Morgan Kaufmann Publishers, 1999. 
[Koz94] J.R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT 

Press, 1994. 
[KW97] A. Kondacs and J.Watrous. On the power of quantum finite state automata. In IEEE 

Symposium on Foundations of Computer Science, pages 66–75, 1997. 
[LB04] A. Leier and W. Banzhaf. Comparison of selection strategies for evolutionary 

quantum circuit design. In Proceedings of the Genetic and Evolutionary Computation 
Conference (GECCO), pages 557–568, 2004. 

[Lei04] A. Leier. Evolution of Quantum Algorithms Using Genetic Programming. PhD thesis, 
University of Dortmund, 2004. 

[LLK+06] S. Lee, S-J. Lee, T. Kim, J-S. Lee, J. Biamonte, and M. Perkowski. The cost of 
quantum gate primitives. Journal of Multiple Valued Logic and Soft Computing, 
12(5/6):561–574, 2006. 

[LM09] Miller M. Perkowski M. Lukac M., Kameyama M. Evolutionary quantum logic 
synthesis: Representation vs. micro-parallelism - submitted, 2009. 

[LP02] M. Lukac and M. Perkowski. Evolving quantum circuit using genetic algorithm. In 
Proceedings of the 2002 NASA/DoD Conference on Evolvable hardware, pages 177–185, 2002. 

[LP05] M. Lukac and M. Perkowski. Combining evolutionary and exhaustive search to find 
the least expensive quantum circuits. In Proceedings of ULSI symposium, 2005. 

[LP08] M. Lukac and M. Perkowski. Inductive learning of quantum behaviors. Facta 
Universitatis, special issue on Binary and Multiple-Valued Switching Theory and Circuit 
Design, 2008. 

[LP09] M. Lukac and M. Perkowski. Quantum finite state machines as sequential quantum 
circuits. In Proceedings of ISMVL, 2009. 

[LPD95] Shihming Liu, Massoud Pedram, and Alvin M. Despain. A fast state assignment 
procedure for large fsms. In DAC ’95: Proceedings of the 32nd ACM/IEEE conference 
on Design automation, pages 327–332, New York, NY, USA, 1995. ACM. 

[LPG+03] M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, C. H. Yu, K. Chung, H. Jee, B.-G. 
Kim, and Y.-D. Kim. Evolutionary approach to quantum reversible circuit 
synthesis. Artif. Intell. Review., 20(3-4):361–417, 2003. 

[LPK09] M. Lukac, M. Perkowski, and M Kameyama. Sequential quantum devices: A 
circuit-based approach, 2009. 

[LPMP02] M. Lukac, M. Pivtoraiko, A. Mishchenko, and M. Perkowski. Automated 
synthesis of generalized reversible cascades using genetic algorithms. In Proceedings 
of Fifth Intern. Workshop on Boolean Problems, pages 33–45, 2002. 

[Luk09] M. Lukac. Quantum Logic Synthesis and Inductive Machine Learning, Ph.D. dissertation. 
PhD thesis, 2009. 

[MC00] C. Moore and J.P. Crutchfield. Quantum automata and quantum grammars. 
Theoretical Computer Science, 237:275–306, 2000. 



 New Achievements in Evolutionary Computation 

 

112 

[MC06] Jialin Mi and Chunhong Chen. Finite state machine implementation with single-
electron tunneling technology. In ISVLSI ’06: Proceedings of the IEEE Computer 
Society Annual Symposium on Emerging VLSI Technologies and Architectures, page 237, 
Washington, DC, USA, 2006. IEEE Computer Society. 

[MCS04] P. Massey, J.A. Clark, and S. Stepney. Evolving quantum circuits and programs 
through genetic programming. In Proceedings of the Genetic and Evolutionary 
Computation conference (GECCO), pages 569–580, 2004. 

[MCS05] P. Massey, J.A. Clark, and S. Stepney. Evolving of a humancompetitive quantum 
fourier transform algorithm using genetic programming. In Proceedings of the 
Genetic and Evolutionary Computation conference (GECCO), pages 1657–1664, 2005. 

[Moo65] G.E. Moore. Cramming more components onto integrated circuits. In Electronics, 
April 19, 1965. 

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. 
Cambridge University Press, 2000. 

[PB99] Arun Kumar Pati and Samuel L. Braunstein. Impossibility of deleting an unknown 
quantum state, 1999. 

[PW02] J. Pachos and H. Walther. Quantum computation with trapped ions in an optical 
cavity. Physical Review Letters, 89(18), 2002. 

[RCHCX+08] Y. Rong-Can, L. Hong-Cai, L. Xiu, H. Zhi-Ping, and X. Hong. Implementing a 
universal quantum cloning machine via adiabatic evolution in ion-trap system. 
Communications in Theoretical Physics, 49(1):80–82, 2008. 

[Rub01] B.I.P. Rubinstein. Evolving quantum circuits using genetic programming. In 
Congress on Evolutionary Computation (CEC2001), pages 114–121, 2001. 

[SBS05] R. Stadelhofer,W. Banzhaf, and D. Suter. Quantum and classical parallelism in 
parity algorithms for ensemble quantum computers. Physical Review A, 71, 2005. 

[SBS08] R. Stadelhofer, W. Banzhaf, and D. Suter. Evolving blackbox quantum algorithms 
using genetic programming. Artif. Intell. Eng. Des. Anal. Manuf., 22:285–297, 2008. 

[Sch95] H.P Schwefel. Evolution and Optimum Seeking. New York, Wiley & Sons, 1995. 
[Sho94] P.W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. 

In Proc. 35nd Annual Symposium on Foundations of Computer Science (Shafi Goldwasser, 
ed.), pages 124– 134. IEEE Computer Society Press, 1994. 

[SKT04] A. Sakai, Y. Kamakura, and K. Taniguchi. Quantum lattice-gas automata simulation 
of electronic wave propagation in nanostructures. pages 241–242, Oct. 2004. 

[Spe04] L. Spector. Automatic Quantum Computer Programming: A Genetic Programming 
Approach. Kluwer Academic Publishers, 2004. 

[Wat95a] J. Watrous. On one-dimensional quantum cellular automata. In Proceedings of the 
36th Annual Symposium on Foundations of Computer Science, pages 528–537, 1995. 

[Wat95b] J. Watrous. On one-dimensional quantum cellular automata. In Proceedings of the 36th 
Annual Symposium on Foundations of Computer Science (FOCS’95), pages 528–532, 1995. 

[Wat97] J. Watrous. On the power of 2-way quantum finite state automata. Technical Report 
CS-TR-1997-1350, 1997. 

[WG98] C. Williams and A. Gray. Automated design of quantum circuits. In in Proceedings of 
QCQC 1998, pages 113–125, 1998. 

[YCS09] A. YakaryIlmaz and A.C. Cem Say. Efficient probability amplification in two-way 
quantum finite automata. Theoretical Computer Science, 410(20):1932 – 1941, 2009. 
Quantum and Probabilistic Automata. 

[YI00] T. Yabuki and H. Iba. Genetic algorithms for quantum circuit design, evolving a 
simpler teleportation circuit. In Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO), pages 421–425, 2000. 



5 

Conflicting Multi-Objective  
Compatible Optimization Control 

Lihong Xu1, Qingsong Hu2, Haigen Hu1 and Erik Goodman3 

1Tongji University, 1239 Siping Road, Shanghai 200092, 
2Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, 

3Michigan State University, East Lansing, MI 48824, 
1,2P.R.China 

3USA 

1. Introduction 
It is clear that there exist many practical control problems in which the consideration of 
multiple objectives is typically required, and these objectives may conflict with each other. 
For example, in many practical control systems, control error often conflicts with energy 
consumption. In the past ten years, we have been studying the greenhouse environment 
control problem and have gained a considerable understanding of greenhouse dynamics. In 
a greenhouse, we must keep the temperature and humidity in certain range that is suitable 
for the plants. However, we are simultaneously required to minimize energy consumption 
to reduce the cost. The control means include ventilation, heating and spraying, of which 
heating and spraying are high-energy-consumption methods. In winter, we can improve the 
temperature by heating and decrease the humidity by heating and ventilating. With the 
traditional control strategy, we could maintain the temperature and humidity at a very 
precise point, but the high energy consumption and expensive cost of this strategy would 
make the greenhouse unprofitable, which implies that this control strategy would not to be 
chosen by any users. This type of problem is also widely found in industrial control. 
There have existed two main traditional methods to solve the above-mentioned multi-
objective problem. One is the trade-off weight method (Masaaki, 1997), which translates this 
multi-objective problem into a single-objective one by adding a set of trade-off weights 
(Masaaki, 1997; Rangan & Poolla, 1997; Eisenhart, 2003). The major advantage of this 
method is that the translated single-objective control problem is very easy to deal with, but 
the disadvantage is that the control result will be strongly associated with the trade-off 
weights chosen, and the controlled objectives may not be satisfactory if we provide bad 
weights. In addition, the selection of weights is very difficult for users and engineers in the 
practical situation. Another approach is the constraints method, which optimizes the most 
important control objective and translates the others into system constraints (Scherer, 1995; 
Scherer et al, 1997; Sznaier et al, 2000). The advantage of this approach is to satisfy all 
controlled objectives through constraints; however, the constraint bounds are very difficult 
for users or control engineers to determine suitably in a practical problem. Bounds that are 
too tight may bar the existence of a feasible solution for the optimization problem, while too 
loose bounds may make the optimization problem lose practical significance. 
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Since the traditional multi-objective control method cannot ensure the existence of a feasible 
controller in advance, we have adopted a multi-objective coordinated control system in the 
greenhouse. When these objectives conflict with each other, it is impractical to fix all the 
objectives at some given optimal "points".  To ensure the existence of a feasible controller, 
we are willing to "back off" on our desire that all the controlled objectives be precisely at 
their optimal values, relaxing these "point" controlled objectives to some suboptimal 
"intervals" or "regions," more generally—we call them "compatible objective regions". For 
example, in the greenhouse, we regulate the temperature objective to be in the interval 24-
30°C instead of exactly at 28°C, and the humidity objective to 60%-85% instead of exactly 
70%. According to the experts, this greenhouse environment is also very suitable for the 
plants. Then we design a controller by optimizing the energy consumption objective. This 
compatible control system can obtain better economic benefit than before and has gained 
considerable attention from users (Wu, 2003). 
Based on the successful application, we have generalized a common compatible control 
theory framework (Xu et al, 2006) from the practical experience obtained with the 
compatible objective region used in the greenhouse. We call this method "multi-objective 
compatible control (MOCC)". 
Control of urban traffic flow is also a typical complex multi-objective control problem, 
evidencing conflict between the main roads and support roads in the saturation state. 
Intensive research has focused on this problem to improve traffic management. MOCC has 
also been applied to this traffic flow control problem, including a Ph.D. dissertation written 
on the subject (Chen et al, 2008). 
Considering a general discrete-time system, the multi-objective control problem can be 
abstracted as 

 ( 1) ( ( ), ( ), )x k f x k u k k+ =   (1) 

where k denotes the time step, ( ) nx k R∈ denotes the state, and ( ) mu k R∈  is the control 
variable. The state and control variables are required to fulfill the following constraints 

 ( )u k X∈ , ( )u k U∈   (2) 

where X  and U  are subsets of nR  and mR , respectively, containing the origin as an 
interior point. Then the multi-objective control problem considered here consists in 
minimizing, at any time step k , 

 ))0(),...,1(),(),0(),...,1(),(()}1{(min )(,)( ukukuxkxkxhkJ iiUkuXkx −−=+∈∈
  (3) 

,...2,1,,...,2,1 == kni  

subject to the system dynamics (1), and 

 kjXjkx ,...,1,0,)( =∈− , kjUjku ,...,1,0,)( =∈−   (4) 

It is difficult to obtain the Pareto solutions by traditional optimization methods. A multi-
objective evolutionary algorithm (MOEA) is a robust search and optimization methodology 
that is able to cope with multiple objectives in parallel without translating the multiple 
objectives into one (see (Fleming & Purshouse, 2002; Goldberg, 1989), and among MOEA 
algorithms, especially when used for problems with only two objectives, NSGA-II performs 
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relatively well in both convergence and computing speed, see (Deb et al, 2002; Jensen, 
2003)). It permits a remarkable level of flexibility with regard to performance assessment 
and design specification.  
This paper is organized as follows. The second section is the description of two-layer MOCC 
with the precise model. The third section is the one-layer MOCC combining offline and 
online parts. A non-even spread reflecting the preference of the user is proposed in this 
section. The fourth section is the MOCC application to greenhouse environment control. The 
fifth section is the conclusion. 

2. Multi-objective compatible control strategy with a precise model 
In this section, we propose a two-layer MOCC framework suitable for a problem with a 
precise model. 

2.1 System description and two-layer MOCC strategy 
We first abstract the theoretical multi-objective control problem. Here the controlled system 
model can be described as follows: 

 ( 1) ( ( ), ( ), )x k f x k u k k+ =   (5) 

 ( ) ( )y k Cx k=   (6) 

where ( ) nx k R∈  denotes the plant states, ( ) ny k R∈  and ( ) mu k R∈  are the control outputs 
and inputs, subject to constraints || ( ) ||u k a∞≤ . The aim of control is to make ( ) | *ky k y→∞→ . 
Taking two objectives as an example, we aim to design controller  

( (0)) { (0), (1),..., ( 1)}p x u u u pπ = −  

and to minimize two conflicting objectives: control error, 1h , and control energy 
consumption 2h , defined as: 

 

* *
1

1
1

2
0

( ( ) ) ( ( ) )

( ) ( )

p
T

k
p

T

k

h y k y y k y

h u k u k

=

−

=

= − −

=

∑

∑
  (7) 

Then the multi-objective control problem (5)-(7) can be translated into the following multi-
objective optimization problem:  

 * *
1

1
min ( ( ) ) ( ( ) )

p
T

k
h y k y y k y

=

= − −∑   (8) 

  
1

2
0

min ( ) ( )
p

T

k
h u k u k

−

=

=∑   (9) 

. .s t  1.  ( (0)) { (0), (1),..., ( 1)}p x u u u pπ = −  
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2.  || ( ) ||u k a∞≤  

3.  
1 1

Lh h≤   

4.  2 2
Lh h≤  

In a practical control system, control error and control energy consumption always lie 
within an acceptable range; here we denote by 1

Lh  and 2
Lh the maximum acceptable values--

which are called the practical objective constraint condition L . Note that 1
Lh  and 2

Lh  are only 
the worst acceptable values and not our control objectives. For example, in a greenhouse, the 
worst acceptable values 1

Lh  and 2
Lh  only ensure that the plants survive, but not that they 

flourish; our aim is to construct a suitable environment for the plants to grow productively, 
and not only one in which they can survive. 
 

 
Fig. 1. Two-layer compatible control framework 

Next we describe what is meant by a compatible control framework. If the model is precise, 
the two-layer compatible control framework is as shown in Figure 1. In this section, the 
uncertainty in the model is all reflected as uncertainty of initial conditions, as will be 
described more fully in the next subsection. For a two-objective problem, compatible 
optimization will mean optimization of one of the objectives while maintaining both within 
an acceptable region of the space identified via the multi-objective search. It differs from the 
classical method of converting two-objective search to a single-objective search with a 
constraint on the other, since that approach does not use the Pareto front from the multi-
objective search to set the values for the constraints for the measure that is converted from 
an objective to a constraint. 
The first layer is compatible optimization and has the following two requirements: 
1. Obtain a compatible (multi-dimensional) controlled objective region 
2. The compatible controlled objective region must meet Pareto-optimality and the users' 

requirements. 
The second layer is the compatible control layer and is devoted to satisfy the following 
requirements: 
3. Design a real-time controller to control the system to remain within the (multi- 

dimensional) objective region determined in the first layer; 
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4. Optimize further the objective that is most critical to the user to optimize, rather than 
simply to keep within a specified region. 

 

 
Fig. 2. Space with two conflicting objectives 

In Figure 2, the shaded area in rectangle AM is the space of objectives in which control 
solutions exist; the cross-hatched area in rectangle AL is the area that meets the constraints 
of the practical problem; we shall call it the objective region with feasible control solutions; 
the bold curve is the Pareto optimal front of the objective space with control solutions. 
The "optimal point" A is not in the subset of the objective space that contains feasible control 
solutions when the objectives conflict. So A is not an optimal point objective that can be 
attained. This means that there is no controller to realize A(A is a "Utopia" point). To 
guarantee the existence of a solution, the point objective A will be expanded to a region 
objective AB, where AB is a rectangular region (it is an interval for each single objective in 
AB; that is why we have to expand the point objective to an interval objective). To ensure the 
existence of a solution (i.e., a compatible solution), B  must be in the region that includes a 
feasible control solution (the cross-hatched area in Figure 2). Since the selection of B would 
ideally optimize certain of the users' requirements, B should be a point on the Pareto 
optimal front, and included in rectangle AL (the bold Pareto front in Figure 2), in order not 
to be dominated by a better choice of B.  
To determine the position of B, we must have two steps in the first layer algorithm: the first 
step is to find the Pareto front of the objective space with control solutions--that is, to find 
multiple, uniformly distributed points on (or approximating) the Pareto front; the second 
step is, according to the requirements of the users, to select one point B on the Pareto front 
that best defines the users' objective region (that is, the users' desired region for keeping the 
objectives within). Thus, the compatible objective region is obtained and the first-layer task 
is finished. 
The second layer aims to design a compatible control system to realize the compatible 
multiple objectives from the first layer. In the controller design, we will not only realize 
these interval objectives, but also further optimize the objective that users are most 
concerned to minimize. The discussion above sketches the main ideas of our compatible 
control methodology.  
The detailed algorithm will be introduced in the next section. 
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2.2 Energy-saving multi-objective compatible control algorithm (Xu, 2006) 
Supposing the system model to be precise, an open-loop control method is adopted here. To 
conveniently illustrate our compatible control algorithm, we use as an example a linear 
discrete-time system as our controlled model 

 ( 1) ( ) ( )x k Ax k Bu k+ = +   (10) 

 ( ) ( ) ( )y k Cx k Du k= +   (11) 

where ( ) nx k R∈  denotes the plant states, ( ) qy k R∈  and ( ) mu k R∈ are the control outputs 
and inputs, respectively, with constraint || ( ) ||u k a∞≤ . Because of different practical 
situations, the initial conditions may be different. We suppose that the initial conditions lie 
in some given compact set, . .i e , 0 1 2 1 2{( , ) | [9,11], [9,11]}X x x x x= ∈ ∈  and the state-space 
matrices are 

0.8 0 1 0 1 0
, , , 0

0.1 0.9 0 1 0 1
A B C D

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

We shall denote this kind of control problem with uncertain initial states as the  
. . ( (0))I C X− problem (namely, control under uncertain initial state).  

The control horizon is set 15p =  and * 0y =  here. We aim to minimize the following two 
control performance indexes (control error, 1h  , and energy consumption, 2h ). 

 
15

1
1

( ) ( )T

k

h y k y k
=

=∑   (12) 

 
14

2
0

( ) ( )T

k

h u k u k
=

=∑   (13) 

To reduce computation and ensure control performance, we enforce ( ) (5), 5u k u k= > .  

2.2.1 The compatible optimization layer-first layer 
The aim of the compatible optimization layer is to find a compatible and relatively optimal 
objective region. To achieve this, first we should have a method to compare points in the 
multi-objective space, judging them to be better or worse, or sometimes, neither. It is easy to 
compare points in a single objective problem. However, it is not so direct in multi--objective 
problems. In this paper, we adopt Pareto non-domination as the comparison method.  
In Figure 3 we assume that every individual i  in the population has two attributes: 1) Non-
domination rank ir ; 2) Local crowding distance id . Here (1) (3) (5) 1,r r r= = = , 

(2) (6) 2,r r= = (4) 3r = . The next step is to seek a Pareto-optimal set--i.e., a set composed of 
many non-dominated solutions. In each generation of the GA, popsize offspring and 
popsize parents are sorted using non-dominated sorting, and the popsize best are retained 
as parents for the next generation. The non-dominated sorting principle used to select 
solutions is: 

 ni j≺  if ( i jr r< ) or (( i jr r= ) and i jd d> )  (14) 
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Fig. 3. Three fronts according to non-domination 

 
Fig. 4. The crowding distance relationship calculation 

Based on the discussion above, and combined with the non-dominated sorting principle of 
NSGA-II, we propose our MOCC algorithm as follows, to determine the set of control inputs 
to be applied.  
 

Algorithm 2.1 Robust Multi-Objective Optimization Algorithm 
Step 1. Initialize parameters including the population size, NIND , the number of 

generations to calculate, MAXGEN , the number of variables NVAR , and the binary 
code length PRECI ; 

Step 2. For variables ( ), 0,1, 2, ...,14u k k = , create a random initial population Chrom  of 
candidate control vectors and set generation 0gen = ; 

Step 3. (0)X is the initial region. Calculate the maximum 1h  and 2h  values of the 
population Chrom  in the (0)X  region; 

Step 4. Based on the non-dominated solution definition, separate the population of 
solutions into consecutively ranked fronts and calculate the individual crowding 
distances id  within each front; 
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Step 5. If gen MAXGEN≤ , set _Chrom f Chrom= and store _Chrom f  as the parent 
population; 

Step 6. Selection operation: randomly choose pairs of solutions in the population and 
subject each pair to a tournament; the total number of tournaments is NIND . In each 
tournament, one solution is selected according to the solution's rank and crowding 
distance id  value, and then becomes a breeder in the new population, Chrom ; 

Step 7. Crossover operation: perform crossover on pairs of solutions in populationChrom ; 
Step 8. Mutation operation: mutate the solutions in populationChrom ; we obtain an 

offspring populationChrom ; 
Step 9. (0)X is the initial region. Calculate the maximum 1h  and 2h  values of the offspring 

population Chrom over the (0)X  region; 
Step 10. Compare the offspring population Chrom and parent population _Chrom f  

according to the Pareto non-domination definition and retain NIND  Pareto- 
optimal solutions; 

Step 11. Set 1gen gen= + ; if gen MAXGEN<  then return to Step 5; otherwise, stop the loop; 
Step 12. Display the Pareto-optimal solutions. 
Let 80, 150, 12, 2NIND MAXGEN NVAR PRECI= = = = . For the initial region control problem 
example here, we choose five arbitrary initial states (0)X  in the initial state region (0)X : 
[10.9, 10.8], [10.8, 10.9], [10.7, 11], [11, 10], [11, 9.5]; see Figure 5. The computational results of 
Algorithm 2.1 as a curve are shown in Figure 6.  
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Fig. 5. Pareto fronts for some fixed initial points, namely, [11,10], [11,9.5], [10.7,11], 
[10.8,10.9] and [10.9,10.8].   
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Fig. 6. The upper-right boundary of Pareto band and the user's selection of interval objective 
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Fig. 7. The control result of the second layer controller  
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Fig. 8. The control result of the first layer (corresponding to point B in Figure 6) 

2.2.2 Compatible control system design — the second layer 
The second layer aims to design a multi-objective compatible control system. Assume that 
we now take energy consumption 2h  as the objective that users are most concerned to 
minimize. 
If we normalize 1h  and 2h  in the intervals 1 [0,800]h ∈  and 2 [0,8]h ∈  as 1h and 2h , then the 
normalized constraints are computed to be 1 0.66h ≤ . We make the interval objective 

1 [0,0.6556]h ∈  from the first layer into a constraint. We now do constrained, single-objective 
optimization of 2h  subject to the 1h  constraint. The online multi-objective compatible 
control algorithm is now defined as follows: 
 

Algorithm 2.2 (Robust multi-objective compatible controller design) 
Step 1. For an arbitrary given initial condition (0) (0)x X∈  and randomly created initial 

values of variable ( ), 0,1, 2, ...,14=u k k ; 
Step 2. Determine the control input ( ), 0,1, 2, ...,14=u k kbest by minimizing the 

performance index 2h  with plant performance constraints 1 [0,0.6556]h ∈  and input 
constraints ( ) 1, 0,1, 2, ...,14u k k≤ =  by traditional optimal methods with constraints 
for multiple variables; 

Step 3. Implement the control input ( ), 0,1, 2, ...,14u k kbest = . 

The system control result for the example with control input ( )u kbest  and (0) [10.8,10.8]x =  
is shown as Figure 7.  
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In order to show that the performance for the primary controlled objective h2 (i.e., energy 
consumption) has been improved in the second layer design, the control result of the first 
layer controller at the same point B is shown in Figure 8, and the difference of objective h2 

between the controllers of the first and second layers is quite apparent in Figure 9. 
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Fig. 9. Comparison of objective 2h  between the controllers of the first and second layers 

From Figure 9, compared with the controller obtained by algorithm 2.1 in the first layer at 
B , the energy consumption 2h  with control input ( )u kbest  obtained by Algorithm 2.2 in 
the second layer has decreased from 2.338 to 1.5651 (actual energy consumption, not 
normalized). It indicates that our method not only ensured the robustness of the system but 
also obviously reduced energy consumption. 

3. Iterative MOCC based on preference selection strategy 
It is difficult to generate a model that matches the real-world system precisely, so the two-
layer method in the previous section is limited in its applicability. Disturbance and model 
error are usual in control problems. To make the method more usable for real-world 
problems, an online iterative MOCC algorithm is proposed in this section.  
 

 
Fig. 10. Control process with non-even staged Pareto front at every control step 

The control process can also be explained by figure 10. With the increasing of the time step 
k , the staged Pareto front will progress from 3m  to 1m  with selecting the control inputs 
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corresponding with 3B , 2B  and 1B  step by step. Note that staged Pareto front 3m , 2m , or 
1m represents an optimization at every time step k , that means the control input is 

computed by iteratively solving a suitable constrained optimization problem. Since k  
increases as the control system operates, the Pareto front of the control objective space is 
related to k , that is, it differs from the ultimate control problem Pareto front, but will 
converge to it. When the system is stable after certain steps, the Pareto front will also come 
to be stable. 
The multi-objective control problem (MOCP) is different from the pure MOEA because the 
state variables are time dependent. This is a big challenge because it means that the time to 
compute a satisfactory solution at each time step must be small, in order to allow for 
multiple time steps (essentially, allowing for on-line determination of the control.)  
Population size in the evolutionary algorithm dramatically affects the computation time, but 
it is necessary to keep a certain population size to make the control process stable. This 
variety of control problem is different from pure dynamic multi-objective optimization since 
the states between neighboring time steps are tightly related, which means the neighboring 
sets in the time series of solution sets are typically relatively close. This is the foundation for 
taking the evolved population (set of candidate solutions) calculated for any given step as 
the initial population for the next step, which can obviously decrease the computing load as 
well as improve system stability. In this section, based on NSGA-II, a multi-objective 
iterative compatible control algorithm is presented according to the principles above. The 
iterative MOCC process is as shown in Figure 11. 
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Fig. 11. Iterative MOCC control flow chart with preference selection strategy 
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3.1 Preference selection strategy and iterative control algorithm (Hu(a) et al, 2009) 
Since the control problem is different from the pure optimization problem. For example, it 
concerns much more about the system stability, even on the sacrifice of losing certain 
optimal performance. There also exist disturbance and uncertainty in model structure. 
Therefore, without considering much more about the uniform spread of the solutions on the 
Pareto front, we take care more about the certain section of the Pareto front. This certain 
section is named as the optimal control objective area. To realize the non-uniform spread of 
the staged Pareto front, integrated with the niche technology that maintain the uniform 
spread of solutions in NSGA-II, an optimal control objective preference selection strategy is 
proposed which can be explained by the following eq.(15), where the right part is adopted 
to revise the fitness value of every solution according to its distance to the optimal control 
objective C

mh . 

 
1 1( ) ( )

max min ( ) 2( )

m m
j j

m m m
j j j

I I
m m

I I I C
m m m m

h h Wd d
f f h h

+ −−
= +

− −
  (15) 

For the convergence of the system, whether or not the system is convergent can be evaluated 
through state variation, and convergence speed can be improved by selecting suitable 
individuals from the population. Since the system convergence cannot be judged from one 
or two steps, certain long step of system state should be tracked to evaluate whether the 
system is convergent or divergent. Whether a solution in the Pareto front is convergent or 
divergent is according to its oscillation at this point. The oscillation judgment should be 
after certain long time from the start of the control process since the system required the 
time to converge to the objective value. By this method, we can make sure which part in the 
full Pareto front is convergent. If it is, guide the state to an individual that locates in the 
nearest non-divergent segment of the Pareto front. The detailed algorithm shown as the 
flow chart in figure 11 is as follows. 
 

Algorithm 3.1 (Online iterative control process based on preference selection strategy) 
Step 1. Initialize parameters including the population size, NIND , the number of 

generations to calculate, MAXGEN , the number of variables, NVAR  and the binary 
code length PRECI ; for variable ( ), 0,1, 2, ...,14u k k =  (the control vector to be 
solved for), create a random initial population Chrom  and set generation 0gen = ; 

Step 2. Calculate the 1h  and 2h  values of population Chrom  based on the initial state 
(0)X ; according to the non-dominated sorting relationship, separate the 

population of solutions into consecutively ranked fronts and calculate the 
individual crowding distances id  within each front; 

Step 3. Set _Chrom f Chrom=  and store _Chrom f  as the parent population; selection 
operation: randomly choose pairs of solutions in the population Chrom  and subject 
each pair to a tournament, the total number of tournaments is NIND ; in each 
tournament, one solution is selected according to the solution's rank and crowding 
distance id  value, and then becomes a breeder in the new population, Chrom ; 
crossover operation: perform crossover on the solutions in the population, Chrom ; 
mutation operation: mutate the solutions in population Chrom ; obtain an offspring 
population Chrom ; compare the offspring population and parent population 
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_Chrom f  according to the Pareto non-domination definition and (when 
applicable) crowding, and retain NIND  Pareto-optimal solutions; 

Step 4. Set 1gen gen= + ; if gen MAXGEN≤ , then return to Step 3, otherwise, stop the loop; 
selection strategy: according to the user's preference strategy, however it may be 
algorithmically captured, select the individual in the population that is most 
satisfactory, and impose its control input on the system, then get the actual state; 

Step 5. Keep population Chrom  as the initial population of the online control calculation; 
initialize the online loop counter _MAXGEN Online and the initial state with the 
current state, and replace (0)X  with the current system state; 

Step 6. For as long as the process is to be controlled, repeat Step3 to Step5, only replace 
MAXGEN  with _MAXGEN Online , otherwise, stop the loop. 

3.2 Multi-objective control problem example 
This subsection intends to introduce a multi-objective control problem example with an 
oscillating Pareto front segment. 
(a) Control system model: 

 
2 2 2 2

1 1 1 1 2

2 1 2 1 2

( 1) 0.2 ( ) 0.2 ( ) 0.1 ( ) ( )
( 1) 0.3 ( ) 0.3 ( ) 0.1 ( ) ( )

x k x k x k u k u k
x k x k x k u k u k

+ = − − + − −
+ = − + + −

  (16) 

(b) Two Objectives:    

 2 2
1 1 2 2min{ ( ) (1 ( )) , ( ) (1 ( )) }h k x k h k x k= + = +   (17) 

(c) Constraints:    

  1 2, [ 0.2,0.5]u u ∈ −  (18) 
(d) Initial point: 

  1 2(0) 1, (0) 1x x= =     (19) 

Since the -constraint method has the capability to determine non-convex Pareto solutions, it 
is applied in this section to get the ultimate Pareto front of the control problem. One Pareto 
solution on the ultimate Pareto front will be obtained with one constraint. The Pareto front 
will be found by calculating with enough different constraints to fill the possible range. The 
Pareto front of this control problem is as shown in Figure 12. 
The feature of this example is that when 0.95<c<1, objective h2 is oscillating (see Figure 12). 
Simulation results of the two-objective variation process are as shown in Figure 13 and 
Figure 14, where c=0.965. Obviously the system is unstable, from Figure 14. It is easy to find 
that the oscillation in Figure 14 is the swing between A1 and A2 in Figure 12. 
In this example, the control result is oscillating if the constraint c is located in 0.95-1.0. This 
subsection will try to design a selection strategy to judge and jump out if the control system 
is in the oscillating or divergent state, which can be embedded as the selection strategy in 
the flow chart shown in Figure 10. With Algorithm 3.1, if first h1 is set as h1<0.965, the same 
value as used in the -constraint method in the example, the algorithm will find that the state 
is not stable. A nearest non-divergent state will be found. See Figure 12, where a new 
suitable solution B is selected, and leads the system into a convergent state (see Figure 15 
and the oscillating part and evenly distributed part in Figure 16). 
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Fig. 12. Ultimate Pareto front of the oscillating multi-objective non-convex control problem 
example 
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Fig. 13. Variation of 1h  with intconstraε −  method at 0.965c =  
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Fig. 14. Variation of 2h  with intconstraε −  method at 0.965c =  
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Fig. 15. Variation of 1h  with Algorithm3.1 
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 Fig. 16. Variation of 2h  with Algorithm 3.1 

4. Application of MOCC to greenhouse environment control 
It is well recognized that the greenhouse environment has a great influence on plant growth, 
production yield, quality, and maintenance processes of the plants. The greenhouse 
environment differs from a purely physical (non-biological) system, in that the greenhouse 
system is typically more complex and nonlinear, and the biological system is likely to have 
significant and numerous effects on its physical surroundings. Greenhouse interior 
temperature, air humidity and CO2 concentration are the main control components 
influencing plant growth and energy usage. These components can be changed through 
heating, fogging, CO2 injection, respectively, and ventilation affects all three of these 
components. Studies and research applications involving environmental control of 
greenhouses have been performed by many researchers (Pasgianos et al, 2003; Nielsen & 
Madsen, 1995; Young et al, 2000; Arvanitis et al. 2000; Taylor et al. 2000; Zolnier et al., 2000). 
These studies and researches are very important to engineering applications in the 
greenhouse. 
There exists a series of dynamic models for greenhouse environments in the literature. The 
central state variable of greenhouse climate is typically air temperature, with relative 
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humidity and carbon dioxide concentration also considered. There are many disturbances to 
the greenhouse climate, which are primarily from solar radiation, outside temperature 
(conductive heat transfer and ventilation heat transfer) and interactions with occupants 
(plants), the controlled heating and ventilating equipment, and the floor. 
Taking into account these analysis mentioned above, a simple greenhouse heating/cooling/ 
ventilating model can be obtained from the extant literature as the following differential 
equations: 

 ( ) ( )1 [ ( ) ( ) ( )] [ ( ) ( )] [ ( ) ( )]in R
heater i fog in out in out

p T T p T

dT t V t UAQ t S t Q t T t T t T t T t
dt C V V C V

λ
ρ ρ

= + − − ⋅ − − − (20) 

 
( )( ) ( )1 [ ( ( ), ( ))] [ ( ) ( )]fogin R

i in in out
H H H

Q tdw t V tE S t w t w t w t
dt V V V

= + − ⋅ −   (21) 

( )
( ( ), ( ))] ( )i
i in T in

S t
E S t w t w tα β

λ
= −  

where /in outT T  is the inside/outside air temperature( oC ), /in outw w  is the inside/outside 
relative humidity(%), UA is the heat transfer coefficient of enclosure ( 1WK − ), V is the 
geometric volume of the greenhouse ( 3m ), ρ  is the air density ( 31.2kgm− ), pC  is the 
specific heat of air ( 1 11006Jkg K− − ), heaterQ is the heat provided by the greenhouse 
heater(W), fogQ is the water capacity of the fog system ( 1

2gH Os− ), iS  is the intercepted solar 
radiant energy (W), λ  is the latent heat of vaporization (2257 1Jg − ), RV  is the ventilation 
rate ( 3 1m s− ), ( , )i inE S w is the evapotranspiration rate of the plants ( 1

2gH Os− ), which is 
affected by the given solar radiation, α and Tβ are scaling parameters, TV  and HV  are the 
temperature and humidity of the actively mixing air volumes, respectively. Generally, TV  
and HV are as small as 60%-70% of the geometric volume V  of the greenhouse. 

4.1 Description of the MOCC algorithm based on energy-saving preference  
Classical Multi-objective Control Problem methods commonly pursue a precise point as the 
control objective, and then optimize its tolerance with the reference value. In greenhouse 
climate, energy consumption and control precision conflict with each other. Low control 
deviation tolerance is at the cost of high energy consumption. If the greenhouse climate is 
controlled to a precise point, energy consumption must be high. In practical greenhouse 
engineering, plants can grow and flourish in some interval or region of humidity and 
temperature rather than only at one precise point. So it is unnecessary for the greenhouse 
climate control problem to pursue low control deviation tolerance. Humidity and 
temperature setpoints can be enlarged to intervals, which can reduce energy consumption 
while keeping the greenhouse climate suitable for plants to grow and flourish. 

4.2 Control objectives  
In greenhouse climate, heater fogQ Q， and RV  are the control inputs. In order to save energy, 
they should be minimized as much as possible. In practical greenhouse engineering, these 
three inputs have different power requirements. We set these three power ratios as 

1 2 3: :λ λ λ  respectively. Then the energy objective function can be described as follows: 
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1 1 ,% 2 %,fog 3 ,%

,% %,fog ,%(0 , , 1)
heart R

heart R

f Q Q V
Q Q V

λ λ λ= + +

≤ ≤
  (22) 

In the greenhouse climate model, although energy saving is an optimization objective, the 
temperature and humidity must also be kept in a range that promotes healthy plant growth. 
If the interior temperature and humidity of the greenhouse are unfit for plant growth, 
energy saving loses its practical significance. So energy consumption must be reduced while 
maintaining a greenhouse climate suitable for plant growth. 
According to the analysis above, temperature and humidity objective functions will be cast 
as tolerances around a pre-set point, shown as: 

  2 ( )in setf abs T T= −   (23) 

 3 ( )in setf abs W W= −   (24) 

,set setT W  are the optimal values of the temperature and humidity ranges that will serve as 
the midpoints of the allowable ranges to be determined as suitable for plant growth. In the 
control process, if the values of (23) and (24) are within the ranges to be determined, then 
these objectives will be treated as having the same value, and will allow have no effect on 
the multi-objective optimization, which will consider only energy consumption. 

4.3 The preference interval of energy-saving information (Xu et al, 2009) 
In the greenhouse climate control problem, the energy-saving preference information is 
incorporated into the optimization process. In this situation, solutions with lower energy 
consumption are superior to others. In standard NSGA-II, the definition of crowding 
distance is identical except for the extreme points. Crowding distance plays a key role in 
obtaining well-distributed Pareto optimal solutions. In order to obtain dense Pareto optimal 
solutions distributed in the preference interval, the crowding definition of standard NSGA-
II is modified. 
First, the special temperature and humidity intervals that are suitable for plant growth are 
defined. Second, the minimum energy consumption value J  within these special intervals 
can be obtained in each evolutionary generation. Because J  is changed in the evolutionary 
computation process, adaptation is applied in this algorithm and J  is updated in each 
evolutionary generation. Third, in the evolutionary process, J  is set as the preference point. 
According to the preference point, the preference interval 1J J Jθ≤ ≤ ∗  (here θ is a 
constant,1 θ< ) is defined. Finally, in each evolutionary generation, if the solution lies 
within the preference interval, its crowding distances is set to n times that of the standard 
NSGA-II crowding distance. The time step should be chosen appropriately and carefully. If 
it is too small, the preference information will lose its power and can’t direct the 
optimization, whereas if it is too larger, it can lead to the phenomenon of premature 
convergence.  
Through modification of NSGA-II, dense Pareto optimal solutions with energy-saving 
preference information are obtained in the neighborhood of minimum value J, and, to some 
degree because of the reduction of population diversity, the algorithm can quickly converge 
to Pareto-optimal solutions.  
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4.4 Simulation results (Hu(b) et al, 2009) 
In order to validate the effectiveness of the algorithm with energy-saving preference 
information, we use the classical greenhouse climate model mentioned above to illustrate it. 
Because heater fogQ Q， and RV  are normalized in the energy consumption function (22), 
coefficients 1 2 3, ,λ λ λ  are percents of maximum power, respectively. In practical greenhouse 
engineering, the energy consumption of a heater is higher than that of devices generating 
fog or ventilation, and ventilation has the lowest energy consumption of these three control 
inputs.  
In most scenarios, in summer, the control inputs used in a greenhouse are only fog and 
ventilation. So in that case, the energy consumption can be presented as: 

 1 2 %,fog 3 ,%Rf Q Vλ λ= +  (25) 

In simulation, we set 2 3: 20 :1λ λ = and 27,setT = 0.7setW = . Then  

     2 ( 27)inf abs T= −   (26) 

 3 ( 0.7)inf abs W= −   (27) 

In the greenhouse climate model, the parameters of Table 1 are suitable for summer or 
winter. Their differences are the initial conditions. For the MOCC method, we set 24°C-30 °C 
and relative humidity 60%-80% as the control intervals. For the classical control method, we 
set 27 °C and relative humidity 70% as the control point. 
 

Parameters 
name Unit expression values 

0C  0 1minW C −  -324.67 

UA  0 1W C−  29.81 

vt  min  3.41 

λ′  W  465 

α′  
3 1 1g minm W− − −

 0.0033 
1
V ′

 3 1g minm− −
 13.3 

Table 1. Identified greenhouse model parameters 

Operators and parameters values 

0

0
in T(0) ( )T C C=  35 

0in (0) (%)ww C=  35 
0

out ( )( )T t C  30 

out ( )(%)w t  40 
2( )( / )iS t W m  200 

Table 2. Initial parameters of greenhouse in summer 

Due to the rapidity of change of outdoor climate, we chose 15 minutes as the control step 
size and operate the control for 1.5 hours. In Figures 17 and 18, control results of the MOCC 
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method and classical control method (precise point control) in summer are shown. The 
horizontal axis represents control step and vertical axis is the control result. The total energy 
consumption is 4.1 for MOCC, and 8 for the precise point control. Because the control point 
is enlarged to an interval in MOCC, it allows much more room to compromise between 
control precision and energy consumption. In the greenhouse climate control problem, the 
requirement for control precision is low, and the control results of MOCC are suitable for 
plant growth, which allows a large reduction of energy consumption compared to precise 
point control. 
In winter, control inputs are heat, fog and ventilation, and solar radiant energy is weak, so  
Si(t) is chosen as 20 rather than 200 in summer. In simulation, the initial conditions are 
shown in Table 3, and the energy consumption function is described as follows: 

 1 ,% %,fog ,%100 20heart Rf Q Q V= + +   (28) 

 
Fig. 17. The control results of Temperature in summer 

 
 Fig. 18. The control results of Humidity in summer 

In Figures 19 and 20, control results of the MOCC method and classical control method 
(precise point control) in winter are shown. The total energy consumption is 34.8 for MOCC, 
and 204.5 for precise point control. Comparing the energy consumption of MOCC and the 
classical control method, the MOCC method has an overwhelming advantage over classical 
control method with respect to energy saving. 
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Operators and parameters values 
0

0
in T(0) ( )T C C=  15 

0in (0) (%)ww C=  40 
0

out ( )( )T t C  -2 
out ( )(%)w t  20 

2( )( / )iS t W m  20 
temperature ‘interval’ control 

objective 
0 024 30C C−  

Humidity ‘interval’ control objective 60% 80%−  
Table 3. Initial parameters of greenhouse in winter 

 
Fig. 19. The control results of Temperature in winter 

 
Fig. 20. The control results of Humidity in winter 

5. Conclusions  
Based on ideas developed in addressing practical greenhouse environmental control, we 
propose a new multi-objective compatible control method. Several detailed algorithms are 
proposed to meet the requirements of different kinds of problem: 1) A two-layer MOCC 
framework is presented for problems with a precise model; 2) To deal with situations 
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including model error and disturbance in the practical problem, a MOCC combining offline 
and online parts is proposed; 3) MOCC is applied to practical greenhouse control. The result 
illustrates the validity of the new strategy. The result of applying MOCC to this problem 
shows that MOCC can be applied widely. 
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1. Introduction 
Phylogenetic inference is one of the central problems in computational biology. It consists in 
finding the best tree that explains the evolutionary history of species from a given dataset. 
Various phylogenetic reconstruction methods have been proposed in the literature. Most of 
them use one optimality criterion (or objective function) to evaluate possible solutions in 
order to determine the best tree. On the other hand, several researches (Huelsenbeck, 1995; 
Kuhner & Felsenstein, 1994; Tateno et al., 1994) have shown important differences in the 
results obtained by applying distinct reconstruction methods to the same input data. Rokas 
et al. (2003) pointed out that there are several sources of incongruity in phylogenetic 
analysis: the optimality criterion employed, the data sets used and the evolutionary 
assumptions concerning data. In other words, according to the literature, the selection of the 
reconstruction method has a great inuence on the results. 
In this context, a multi-objective approach can be a relevant contribution since it can search 
for phylogenies using more than one criterion and produce trees which are consistent with 
all employed criteria. Recently, Handl et al. (2006) discussed the current and future 
applications of multi-objective optimization in bioinformatics and computational biology 
problems. Poladian & Jermiin (2006) showed how multi-objective optimization can be used 
in phylogenetic inference from various conicting datasets. The authors highlighted that this 
approach reveals sources of such conicts and provides useful information for a robust 
inference. Coelho et al. (2007) propose a multi-objective Artificial Immune System (De 
Castro & Timmis, 2002) approach for the reconstruction of phylogenetic trees. The 
developed algorithm, called omniaiNet, was employed to find a set of Pareto-optimal trees 
that represent a trade-off between the minimum evolution (Kidd & Sgaramella, 1971) and 
the least-squares criteria (Cavalli-Sforza & Edwards, 1967). Compared to the tree found by 
Neighbor Joining (NJ) algorithm (Saitou & Nei, 1987), solutions obtained by omni-aiNet 
have better minimum evolution and least squares scores. 
In this paper, we propose a multi-objective approach for phylogenetic reconstruction using 
maximum parsimony (Fitch, 1972) and maximum likelihood (Felsenstein, 1981) criteria. The 
basis of this approach and preliminary results were presented in (Cancino & Delbem, 
2007a,b). The proposed technique, called PhyloMOEA, is a multi-objective evolutionary 
algorithm (MOEA) based on the NSGA-II (Deb, 2001). The PhyloMOEA output is a set of 
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distinct solutions representing a trade-off between the criteria considered. Results show the 
found trees are statistically consistent with the maximum parsimony and maximum 
likelihood solutions calculated separately. Moreover, the clade supports obtained from the 
trees found by Phylo-MOEA approximate, in general, the clade posterior probabilities of 
trees inferred by Bayesian inference methods. 
This paper is organized as follows. Section 2. presents a brief introduction to the 
phylogenetic reconstruction methods. Section 3. introduces the key concepts of genetic 
algorithms and their application in phylogenetic inference. Section 4. provides background 
information about multi-objective optimization. Section 5. presents a detailed description of 
PhyloMOEA. Section 6. discusses the experiment results involving four nucleotide datasets 
and discusses the main results. Finally, Section 7. presents conclusions and proposes future 
work. 

2. Phylogenetic reconstruction 
Phylogenetic analysis studies the evolutionary relationships among species. The data used 
in this analysis usually come from sequence data (nucleotide or aminoacid sequences), 
morphological features, or other types of data (Felsenstein, 2004). Frequently, researchers 
only use data from contemporary species due the information about past species is 
unknown. Consequently, the phylogenetic reconstruction is only an estimation process since 
it is based on incomplete information (Swofford et al., 1996). 
The evolutionary history of species under analysis is often represented as a leaf-labelled 
tree, called phylogenetic tree. The actual species (or taxons) are represented by the external 
nodes of the tree. The past species (ancestors) are referred by internal nodes of the tree. 
Nodes are connected by branches which may have an associated length value, representing 
the evolutionary distance between the nodes connected by the branch. It is important to 
stress that a phylogenetic tree is a hypothesis (of many possible ones) concerning the 
evolutionary events in the history of species. 
A phylogenetic tree can be rooted or unrooted. In a rooted tree, there is a special node called 
root, which defines the direction of the evolution, determining ancestral relationships 
among nodes. An unrooted tree only shows the relative positions of nodes without an 
evolutionary direction. 
The main objective of the phylogenetic inference is the determination of the best tree that 
explains the evolutionary events of the species under analysis. Several phylogenetic 
reconstruction methods have been proposed in the literature. Swofford et al. (1996) 
separated phylogenetic reconstruction methods into two categories: 
1. Algorithmic methods, which use well-defined steps to generate a tree. An important 

feature of these methods is that they go directly to the final solution without examining 
many alternatives in the search space. Consequently, the solutions are quickly 
produced by these methods. Clustering approaches like NJ (Saitou & Nei, 1987) are in 
this category. 

2. Optimality criterion methods, which basically have two components: an objective 
function (optimality criterion) and a search mechanism. The objective function is used 
to score each possible solution. The search mechanism walks through the tree search 
space in order to find the best scored tree according to the criterion used. Optimality 
methods are slower than algorithmic methods, however, they often provide more 
accurate answers (Huelsenbeck, 1995). Examples of optimality criterion methods are 
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maximum parsimony (Fitch, 1972), maximum likelihood (Felsenstein, 1981) and least 
squares (Cavalli-Sforza & Edwards, 1967). 

One of the main problems in phylogenetic inference is the size of the tree search space 
which increases exponentially in function of the number of taxons. In the case of optimality 
criterion methods, this means that the search mechanism requires heuristic techniques, 
which are able to find adequate solutions in reasonable running time for large or even 
moderate datasets. Exhaustive and exact search techniques can also be employed, although 
their use is constrained to problems with a small number of species. 
Sections 2.1, 2.2 and 2.3 present a brief review of the criteria employed in this study: 
maximum parsimony, maximum likelihood and Bayesian inference. 

2.1 Maximum parsimony 
The parsimony principle states that the simplest hypothesis concerning an observed 
phenomenon must always be preferred. Parsimony methods search for a tree that minimizes 
the number of character state changes (or evolutionary steps). This tree, called maximum 
parsimony tree, refers to the simplest explanation of the evolutionary history for the species 
in a given dataset (Felsenstein, 2004). 
Let D be a dataset containing n species. Each specie has N sites, where dij is the character 
state of specie i at site j. Given tree T with node set V (T) and branch set E(T), the 
parsimony score of T is defined as (Swofford et al., 1996): 

 
(1) 

where wj refers to the weight of site j, vj and uj are, respectively, the character states of nodes 
v and u at site j for each branch (u, v) in T and C is the cost matrix, such that C(vj , uj) is the 
cost of changing from state vj to state uj . The leaves of T are labelled by character states of 
species from D, i.e., a leaf representing k-th species has a character state dkj for position j. The 
following properties can be noted from Equation (1): 
1. Parsimony criterion assumes independence of sites, i.e., each site is evaluated 

separately; 
2. The calculation of the parsimony score only takes into account the tree topology. Thus, 

the parsimony criterion does not incorporate other information, like branch lengths. 
There are several variants of the parsimony criterion. One of the simplest is the Fitch 
parsimony (Fitch, 1972), which assumes a unitary cost matrix such that Cxy = 1 if x ≠ y; 
otherwise Cxy = 0. The Fitch and even other more complex variants of parsimony can be 
even generalized for arbitrary cost matrix and restrictions of state changes (Sankoff, 1985). 
Given a tree T, it is necessary to determine the character states of its internal nodes such that 
PS(T) is minimized. This is also known as the small parsimony problem. In the case of the 
Fitch parsimony, a post-order traversal in T is enough to minimize PS(T) (this procedure is 
known as Fitch algorithm (Fitch, 1972)). In the case of generalized parsimony, the small 
parsimony problem can be solved by applying the Sankoff algorithm (Sankoff, 1985). 
Having defined an algorithm to minimize PS(T) for a given tree T, we should determine the 
tree T* such that PS(T*) is the minimum for all tree search space. The problem of finding T* 
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is called large parsimony problem, which was proved to be NP-hard (Felsenstein, 2004). 
However, several heuristic techniques have been proposed to overcome such a difficulty 
(Goloboff, 1996). 

2.2 Maximum likelihood 
Likelihood is a widely-used statistical measurement. It evaluates the probability of a 
hypothesis giving rise to the observed data (Swofford et al., 1996). Thus, a hypothesis with 
higher probability is preferred to one with lower probability. The likelihood of a 
phylogenetic tree, denoted by L = P(D|T,M), is the conditional probability of the sequence 
data D given a tree T and an evolutionary model M, which contains several parameters 
related to tree branch lengths and a sequence substitution model (Felsenstein, 2004). Two 
assumptions are necessary to compute likelihoods: 
1. Evolution at different sites is independent; 
2. Evolution from different tree lineages is independent, i.e., each subtree evolves 

separately. 
Given a tree T, L(T) is calculated from the product of partial likelihoods from all sites: 

 
(2) 

where Lj(T) = P(Dj|T,M) is the likelihood at site j. The site likelihoods can also be expressed 
as: 

 
(3) 

where r is the root node of T, rj refers to any possible state of r at site j, πrj 
is the frequency of 

state rj, and Cj(rj, r) is the conditional likelihood of the subtree rooted by r. More 
specifically, Cj(rj, r) is the probability that everything that is observed from node r to the 
leaves of T, at site j, given r has state rj . Let u and v be the immediate descendants of r, then 
Cj(rj , r) can be formulated as: 

 

(4) 

where uj and vj refer to any possible state of nodes u and v, respectively. trv and tru are the 
lengths of the branch connecting node r to nodes v and u, respectively. P(rj, uj, tru) is the 
probability of changing from state rj to state uj during evolutionary time tru. Similarly, P(rj, 
vj, trv) is the probability of changing from state rj to state vj at time tvu. Both probabilities are 
provided by the evolutionary model M. 
An efficient method to calculate L was proposed by Felsenstein (Felsenstein, 1981) using a 
dynamic programming approach, where L is obtained by a post-order traversal in T. 
Usually, it is convenient to work with logarithmic values of L, then Equation (2) results in: 
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(5) 

The likelihood calculation presented in this section assumes that sites evolve at equal rates. 
However, this assumption is often violated in real sequence data (Yang, 2006). Several 
among site-rate variation (ASRV) approaches can be incorporated in model M. One of the 
most employed ASRV approaches is the discrete-gamma model (Yang, 1994) where 
variables rates at sites follow a Γ distribution discretized in a number of categories. Several 
studies (Huelsenbeck, 1995; Tateno et al., 1994) have pointed out that the use of ASRV 
models can improve the results of the likelihood inference. However, ASRV models also 
increase the computational cost of the likelihood calculations. 
In order to maximize L for a given tree T, it is necessary to optimize the parameters of 
model M (i.e: branch lengths and parameters of the substitution model chosen), which can 
be achieved using classical optimization methods (Felsenstein, 2004). Finding the maximum 
likelihood tree in the search space is a more difficult problem. Moreover, only heuristic 
approaches (Guindon & Gascuel, 2003; Lemmon & Milinkovitch, 2002; Lewis, 1998; 
Stamatakis & Meier, 2004) are feasible for large or even moderate datasets. 

2.3 Bayesian Inference 
Bayesian Inference methods have been more recently applied to phylogenetic inference 
(Larget & Simon, 1999; Rannala & Yang, 1996). The main objective of these methods is the 
calculation of the posterior probability of a tree topology and a model given the data. 
Let D be a dataset containing n species. Let Ti be the i-th tree topology from NT tree possible 
topologies for n species. Let M be the model containing parameters as branch lengths and 
an sequence substitution model. The posterior probability of tree Ti given D is expressed by: 

 
(6) 

where P(D|Ti,M) is the likelihood of Ti and P(Tj, M) (P(Ti, M)) refers to the prior probability 
of tree Tj (Ti) and the parameters of M. The prior probabilities for tree topologies and 
parameters of M are specified in advance. Calculating the denominator from Equation 6 
involves summing over all tree topologies and integrating over all parameters of M. This 
calculation is feasible only for small trees. To avoid this problem, the Markov chain Monte 
Carlo (MCMC) methods have been employed (Yang, 2006). 
The MCMC algorithm walks through the tree topology and the parameter spaces. At the 
end of an MCMC execution, a sample of its iterations can be summarized in a 
straightforward way (Yang, 2006). For example, the tree topology with the highest posterior 
probability, called MAP tree, corresponds to the most visited tree during MCMC execution. 
Posterior probabilities from other tree topologies are calculated in a similar way. Moreover, 
it is also possible to calculate clade posterior probabilities of the MAP tree. In this case, the 
clade posterior probability refers to the proportion of visited trees that include the clade. 
Mr.Bayes (Ronquist et al., 2005) and BAMBE (Larget & Simon, 1998) are programs that 
implement Bayesian inference applied to phylogenetic reconstruction. 
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3. Genetic algorithms in phylogenetic inference 
Genetic Algorithms (GAs) are metaheuristics (Alba, 2005) that can be used in phylogenetic 
inference. In the following paragraphs, GAs and their application to phylogenetic analysis 
are discussed. 
Genetic Algorithms are search and machine learning techniques inspired by natural 
selection principles (Goldberg, 1989). They have been applied to a wide range of problems 
of science and engineering (Deb, 2001). A GA uses a set of individuals, called population, 
where each individual represents solutions for a given optimization problem. A fitness 
value, based on the problem objective function, is associated with each individual in the 
population. Individuals are internally codified using a data structure that must be able to 
store all relevant problem variables and represent all feasible solutions. 
First, a GA creates an initial population and calculates the fitness of its individuals. Then, a 
new population is generated using three genetic operators: selection, crossover and 
mutation (Goldberg, 1989). The selection operator uses individuals'fitness to choose 
adequate candidates to generate the next population. Features of the selected candidates are 
combined by the crossover operator and new offspring solutions are created. Then, small 
modifications are performed in offspring solutions by the mutation operator at a very low 
rate. The new individuals are stored in the next population. While crossover is useful to 
explore the search space, mutation can help to escape from local optima. The average fitness 
of the new population is expected to be better than the average fitness of the previous 
population. This process is repeated until a stop criterion has been reached. The selection 
operator leads Gas towards an optimal or near-optimal solution in the fitness landscape. The 
solutions found by the GA are in the final population. 
Various papers have described the application of GAs to the phylogeny problem focused on 
one optimality criterion. Matsuda (1996) performed the first application of GAs to 
phylogenetic inference using the maximum likelihood criterion. Lewis (1998) proposed 
GAML, a GA for maximum likelihood, which introduces a sub-tree swap crossover and 
mutation operator based on SPR (Sub-tree Pruning and Regrafting (Swofford et al., 1996)) 
branch swapping. In his study, Lewis used the HKY85 (Hasegawa et al., 1985) evolutionary 
model whose parameters are included in the encoding of the individual. Thus, GAML 
optimized the tree topology, branch lengths and parameters of HKY85 model 
simultaneously. 
Katoh et al. (2001) proposed GA-mt, a GA for maximum likelihood, which outputs multiple 
trees in the final population. These trees include the maximum likelihood tree and multiple 
alternatives that are not significantly worse compared with the best one. GA-mt also takes 
into account ASRV in the likelihood calculation. The crossover is a tree swap operator and 
the mutation is based on TBR (Tree Bisection and Reconnection (Swofford et al., 1996)) 
topological modifications. GA-mt employs Initial trees taken from bootstrap resampling 
analysis (Felsenstein, 2004). 
Lemmon and Milinkovitch developed METAPIGA (Lemmon & Milinkovitch, 2002), a 
metapopulation GA (metaGA) for phylogenetic inference using maximum likelihood. In the 
proposed metaGA, several populations evolve simultaneously and cooperate in the search 
for the optimal solutions. METAPIGA combines advantages such as fast search for optimal 
trees, identification of multiple optima, fine control over algorithm speed and accuracy, 
production of branch support values (Felsenstein, 2004) and user-friendly interface. Another 
key element proposed by the authors is the consensus pruning mechanism. This procedure 
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identifies the common regions (partitions) that are shared by trees in populations. These 
regions are protected against changes introduced by topological modifications. Thus, the 
search is only focused on the unprotected regions until no more changes are allowed. 
METAPIGA includes a subtree swap crossover operator and several mutation operators 
based on SPR, NNI (Nearest Neighbor Interchange (Swofford et al., 1996)), taxa swap and 
subtree swap topological changes. These operators are applied only if they do not destroy 
any consensus region. 
Zwickl (2006) proposed a GA approach called GARLI (Genetic Algorithm for Rapid 
Likelihood). GARLI was developed in order to find the maximum likelihood tree for 
moderate and large sequence data (nucleotides, aminoacids and codon sequences). The 
author introduces several improvements in the topological search and branch length 
optimization tasks. These novel proposals reduce significantly the computational time 
required to perform the aforementioned tasks. For example, instead of optimizing all tree 
branches, GARLI optimizes a branch if the tree likelihood improvement is higher than a 
predetermined value. Thus, only branches that lead to a significant likelihood gain are 
considered for optimization. Parallel GARLI versions were also proposed. 
GAs and local search were combined by Moilanen (2001) in PARSIGAL, a hybrid GA for 
phylogenetic inference using the maximum parsimony criterion. PARSIGAL uses a subtree 
exchange crossover operation and, instead of mutation, a local search approach based on 
NNI and TBR is employed. Using this hybrid algorithm, the GA defines the promising 
regions that should contain the global optimum, while the local search quickly reaches such 
a solution. PARSIGAL also includes heuristics for a fast recalculation of parsimony scores 
after topological modifications performed by the local search mechanism. 
Congdon (2002) proposed a GA, called GAPHYL, which uses the parsimony criterion for the 
inference of phylogenetic trees. GAPHYL uses several subpopulations to avoid premature 
convergence, a subtree swap crossover operator and a taxa swap mutation operator. Other 
applications of GAs for phylogenetic inference employ distance-based optimality criterion 
(Cotta & Moscato, 2002). 
Experimental results from the researches described above have shown that Gas have better 
performance and accuracy when compared to heuristics implemented in widely-used 
phylogenetic software, like PHYLIP (Felsenstein, 2000) and PAUP* (Swofford, 2000). 
Moreover, GAs are also suitable for use with several optimality criteria in order to solve 
multi-objective optimization problems (MOOP). Section 4. briey describes MOOPs and the 
application of GAs to them. 

4. Multi-Objective Optimization 
A MOOP deals with two or more objective functions that must be simultaneously 
optimized. In this context, the Pareto dominance concept is used to compare two solutions. A 
solution x dominates a solution y if x is not worse than y in all objectives and if it is better 
for at least one. Solving an MOOP implies calculating the Pareto optimal set whose 
elements, called Pareto optimal solutions, represent a trade-off among objective functions. 
Pareto optimal solutions are not dominated by any other in the search space. The curve 
formed by plotting these solutions in the objective function space is called Pareto front. If 
there is no additional information regarding the relevance of the objectives, all Pareto 
optimal solutions have the same importance. Deb (2001) highlights two fundamental goals 
in MOOP: 
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1. Finding a set of solutions as close as possible to the Pareto optimal front; 
2. Finding a set of solutions as diverse as possible. 
Many optimization techniques have been proposed to deal with MOOPs (Deb, 2001). The 
simplest approach transforms an MOOP into a single optimization problem using a 
weighted sum of objective functions. This strategy finds a single point in the Pareto front for 
each weight combination. Thus, several runs using different weight values are required to 
obtain a reasonable number of Pareto optimal solutions. Nevertheless, this method does not 
guarantee solution diversity in the frontier. Other classical methods to deal with MOOPs 
also have limitations, i.e., they need a priori knowledge of the problem, for example, target 
values (which are not always available). 
Evolutionary algorithms for multi-objective optimization (MOEAs) have been successfully 
applied to both theoretical and practical MOOPs (Deb, 2001). In general, the most elaborated 
MOEAs are capable of finding a distributed Pareto optimal set in a single run. NSGA-II, 
SPEA2 (Zitzler et al., 2001), PAES (Knowles & Corne, 1999) are some of the most relevant 
MOEAs available in the literature. 
Section 5. describes PhyloMOEA, the proposed MOEA, which is based on the NSGA-II, to 
solve the phylogenetic inference problem using maximum parsimony and maximum 
likelihood criteria. 

5. PhyloMOEA 
In general, optimality criterion methods solve the phylogenetic reconstruction problem as a 
single objective optimization problem, i.e., only a single optimality criterion (maximum 
parsimony, maximum likelihood, etc.) is employed to evaluate possible solutions. As a 
consequence, the results obtained from diverse phylogenetic methods often disagree. A 
feasible alternative is a multi-objective approach which takes into account several criteria 
simultaneously. This approach not only enables the determination of the best solution 
according to each criterion separately, but also finds intermediate solutions representing a 
trade-off among the criteria used. The following Subsections describe the proposed 
algorithm. 

5.1 Internal encoding 
A phylogenetic tree are usually represented using an unrooted tree data structure. An 
internal node is represented as a circular linked list, where each node has a pointer to its 
adjacent nodes (Felsenstein, 2004). The degree of an internal node defines the number of 
elements in the list. 
On the other hand, PhyloMOEA employs a standard graph structure provided by the Graph 
Template Library (GTL) (Forster et al., 2004). GTL facilitates the implementation of genetic 
operators and the storage of additional information, such as branch lengths. Furthermore, 
parsimony and likelihood criteria can operate on rooted or unrooted trees. 

5.2 Initial solutions 
PhyloMOEA uses two populations, a parent population and an offspring population, as 
NSGA-II does. The parent population is denoted as Pi, where i refers to the i-th generation. 
In the first generation, solutions from P1 are created by an initialization procedure. In 
subsequent generations, Pi stores the best solutions found in the previous i–1 iterations. 
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Solutions from Pi are also used to create the offspring population, denoted by Qi, by 
applying selection, crossover and mutation operators. 
PhyloMOEA can generate initial random trees in P1; however, these trees are poor 
estimations of the maximum parsimony and likelihood trees. In this case, the PhyloMOEA's 
convergence is severely affected. In order to overcome this drawback, the initial solutions 
are provided by maximum likelihood, maximum parsimony and bootstrap analysis, which 
are performed before PhyloMOEA's execution. This strategy is usually employed by other 
GA-based phylogenetic programs (Katoh et al., 2001; Lemmon & Milinkovitch, 2002). There 

5.3 Objective functions 
PhyloMOEA calculates parsimony scores of the unrooted trees using the Fitch algorithm 
(Fitch, 1972). Several improvements to the original algorithm are detailed in the literature 
(Goloboff, 1999; Ronquist, 1998). It is possible to quickly recalculate the parsimony score 
after applying topological changes to the trees. Thus, unnecessary recalculations are avoided 
and evaluations of solutions are fast. These improvements were not implemented in 
PhyloMOEA. 
The likelihood scores are calculated using the Felsenstein algorithm (Felsenstein, 1981). 
However, for large datasets, this calculation is time-consuming (Swofford et al., 1996). There 
are some approaches described in the literature (Larget & Simon, 1998; Stamatakis et al., 
2002) in order to overcome this problem. 

5.4 Fitness evaluation 
The fitness of a solution is obtained using two values: a rank and a crowding distance (Deb, 
2001). The rank value is calculated using a non-dominated sorting algorithm applied to R = 
Pi ∪Qi (see Section 5.2). This algorithm divides R into several frontiers, denoted by F1, F2,…, 
Fj . The first frontier (F1) is formed by non- dominated solutions from R. Solutions in F1 are 
removed from R and the remaining solutions are employed to calculate the next set of non-
dominated solutions, denoted by F2. This process is repeated in order to find F3, and so on, 
until R is empty. The rank value of an individual is the index of the frontier it belongs to. 
 

 
Fig. 1. Sorting by non-dominance and crowding distance used in PhyloMOEA. 
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Solutions from the frontiers are copied to the next population Pi+1. As Pi and Qi have size N, 
there are 2N solutions which compete for N slots in Pi+1. Solutions from frontiers Fj=1…n are 
copied to Pi+1 until there are more solutions in frontier Fn than slots in Pi+1. In this case, the 
individuals from Fn with the highest crowding distance values are copied to Pi+1 until Pi+1 is 
fulfilled. The crowding distance is useful to maintain the population diversity. It reflects the 
density of solutions around its neighborhood. This value is calculated from a perimeter 
defined by the nearest neighbors in each objective. Figure 1 illustrates the non-dominated 
sorting algorithm and crowding distance mechanism implemented in PhyloMOEA. 
PhyloMOEA uses a tournament selection to choose individuals for reproduction. It 
randomly picks two individuals from Pi and chooses the best one, which has the lowest 
rank. If both solutions have the same rank, the solution with the longest crowding distance 
is preferred. 

5.5 Crossover operator 
The crossover operator implemented in PhyloMOEA is the same operator proposed in 
GAML (Lewis, 1998). It combines a subtree from two parent trees and creates two new 
offspring trees. Given trees T1 and T2, this operator performs the following steps: 
1. Prune a subtree s from T1; 
2. Remove all leaves from T2 that are also in s; 
3. The offspring subtree  is obtained by regrafting s to an edge randomly chosen from T2. 
The second offspring, denoted as   is created in a similar way: prune a subtree from T2 and 
regraft it in T1. Figure 2 illustrates this operator. 
 

 
Fig. 2. Example of the crossover operator. 
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5.6 Mutation operator 
There are three well-known topological modifications used in phylogenetic inference: NNI, 
SPR and TBR (See Section 3.). NNI was employed in PhyloMOEA, since it performs fewer 
topological modifications than the others. This mutation operator performs the following 
steps: 
1. Choose an interior branch whose connected nodes i, j define two pairs of neighbors: A, 

B adjacent to i (A,B ≠j) and C, D adjacent to j (C,D ≠i); 
2. Execute a swap of two nodes taken from each pair of neighbors. 
Figure 3 illustrates the NNI mutation operator. This operator also modifies branch lengths in 
order to improve the tree likelihood value. Some branches, chosen at random, have their 
lengths multiplied by a factor obtained from a Γ-distribution (Lewis, 1998). 
 

 
Fig. 3. Example of NNI mutation operator. 

Branch lengths from trees in the final population are optimized using a non-decreasing 
Newton-Raphson method described by Yang (2006). Since this optimization is time-
consuming, it is applied only after a PhyloMOEA execution. 

6. Results 
This section describes the performed tests and analysis of the results. PhyloMOEA was 
tested using four nucleotide datasets: 
1. The rbcL_55 dataset comprises 55 sequences (each sequence has 1314 sites) of the rbcL 

chloroplast gene from green plants (Lewis, 1998); 
2. The mtDNA_186 dataset contains 186 human mitochondrial DNA sequences (each 

sequence has 16608 sites) obtained from The Human Mitochondrial Genome Database 
(mtDB) (Ingman & Gyllensten, 2006); 

3. The RDPII_218 dataset comprises 218 prokaryotic sequences of RNA (each sequence 
has 4182 sites) taken from the Ribosomal Database Project II (Cole et al., 2005); 

4. Finally, the ZILLA_500 dataset includes 500 rbcL sequences (each sequence has 1428 
sites) from plant plastids (Guindon & Gascuel, 2003). 

The optimization using maximum parsimony was performed by program NONA for the 
four datasets. Similarly, maximum likelihood analysis was carried out using programs 
RAxML-V and PHYML. The discrete-gamma HKY85 model (HKY85+Γ) was used to 
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consider ASRV. RAxML-V calculates the likelihood using the HKY85CAT model 
(Stamatakis, 2006), which is an approximation of the HKY85+Γ. The branch lengths of the 
tree obtained by RAxML - V and the parameters of the HYK85+Γ model were optimized 
using PHYML. The aforementioned programs include sophisticated heuristics that produce 
satisfactory and fast results. Table 1 shows the parsimony and likelihood scores obtained 
from these programs. Such values represent extreme points of the Pareto front for the two 
objectives (parsimony and likelihood). 
 

 
Table 1. Parsimony and likelihood scores of the phylogenies found by NONA and RAxML-
V+PHYML. 

The trees in the initial population were generated from a bootstrap analysis applied to each 
dataset by using software PHYML, which employs the BIONJ algorithm (Gascuel, 1997) to 
each replication. The parsimony and likelihood scores of solutions obtained by the BIONJ 
algorithm are close to the scores shown in Table 1. However, for RDPII_218 and 
ZILLA_500 datasets, the tree topologies obtained by bootstrap were not close enough to 
those produced by NONA and RAxML-V+PHYML. Consequently, the PhyloMOEA's 
convergence is slower in this case. TO mitigate this effect, all solutions from Table 1 were 
included in the initial population. 
Table 2 shows the parameters of PhyloMOEA used for the experiments. The ZILLA_500 
dataset requires the largest number of generations and population size since it contains a 
larger number of species. 
 

 
Table 2. Parameters used by PhyloMOEA in the experiments. 
Due to the stochastic nature of GAs, PhyloMOEA was run 10 times for each dataset. At the 
end of each run, the solutions provided by PhyloMOEA could be classified into two types: 
1. Pareto-optimal Solutions (POS), which are the non-dominated solutions of the final 

population; 



A Multi-Criterion Evolutionary Approach Applied to Phylogenetic Reconstruction  

 

147 

2. Final Solutions (FS), which include POS and the trees that have equal parsimony scores 
and different likelihood scores. These trees are promising from the perspective of 
parsimony criterion. 

Table 3 shows the best score, average score and standard deviation (σ) for the maximum 
parsimony and maximum likelihood criteria for all executions. The values in bold (Table 3) 
indicate the parsimony and likelihood scores improved by PhyloMOEA when compared 
with scores from Table 1. This improvement only occurs in the mtDNA_186 dataset. On the 
other hand, the standard deviation of parsimony score for this dataset indicates that the best 
solutions found by PhyloMOEA can be inferior than the one found by NONA. 
The number of FS found for each execution can also be used to evaluate the ability of 
PhyloMOEA to reproduce results. Table 4 shows the maximum, average and standard 
deviation of the number of solutions in the two types of solution sets (POS and FS) for all 
executions. The low standard deviation values indicate the robustness of PhyloMOEA's 
behavior. 
 

 
Table 3. Summary of the results found by PhyloMOEA for parsimony and likelihood 
criteria. 

 
Table 4. Summary of experiment results for the number of solutions found by PhyloMOEA. 

Figures 4(a), 4(b), 4(c) and 4(d) show the Pareto fronts obtained in one PhyloMOEA 
execution for rbcL_55, mtDNA_186, RDPII_218 and ZILLA_500 datasets, respectively. 
Parsimony scores are represented in the horizontal axis while likelihood scores are 
represented in the vertical one. These Figures also show Final Solutions near the Pareto 
front. Since the parsimony scores are integer values, the resulting Pareto front is a 
discontinuous set of points. The two extreme points from the frontier represent the 
maximum parsimony and maximum likelihood trees found by PhyloMOEA. If both points 
are close to each other, a reduced number of intermediate solutions is expected. This is the 
case for rbcL_55 and mtDNA_186 datasets, as illustrated in Figures. 4(a) and 4(b). Moreover, 
Table 3 shows a smaller number of trees in the Pareto front found for both datasets. On the 
other hand, extreme points in RDPII_218 and ZILLA_500 datasets are distant from each 
other. Consequently, there is a greater number of intermediate solutions, as shown in Figs. 
4(c) and 4(d) and in Table 4. Nevertheless, PhyloMOEA was able to find a relatively large 
number of FS for all datasets. 
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Fig. 4. POS and FS for the employed datasets. 

Solutions from POS and FS were compared using the Shimodaira-Hasegawa test (SH test) 
(Shimodaira & Hasegawa, 1999). The SH-test calculates a P–value for each solution, which 
indicates if a tree is significantly worse than the best scored tree according to a criterion. If a 
tree has a P–value lower than a given bound (usually 0.05), it can be rejected. The SH-test 
was performed for parsimony and likelihood criteria using PHYLIP and PAML (Yang, 
1997), respectively. 
Tables 5 and 6 summarize the results from the applications of the SH-test to POS and FS for 
each dataset showing the number of non-rejected (P ≥ 0.05) and rejected (P < 0.05) trees 
according to parsimony and likelihood criteria. It can be noted in Table 5 that there are few 
rejected POS for the rcbL_55 and mtDNA_186 dataset in both criteria. This is due to the 
extreme solutions in the Pareto front having their parsimony and likelihood scores close 
and, therefore, intermediate solutions cannot be rejected. On the other hand, extreme 
solution scores for RDPII_218 and ZILLA_500 datasets are more distant. Thus, SH-test rejects 
a larger number of POS for parsimony and likelihood criteria. 
In the case of the FS, the SH-test applied to parsimony and likelihood criteria rejects most of 
the solutions for rbcL_55, RDPII_218 and ZILLA_500 datasets. On the other hand, the SH-test 
for parsimony criteria does not reject most of the FS from the mtDNA_186 dataset. It reveals 
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that parsimony scores for FS are close to the best parsimony score found. The likelihood 
scores of FS from the mtDNA_186 dataset are also close to the maximum likelihood score, 
however, the proportion of rejected solutions is greater in this case. 
 

 
Table 5. Summary of SH-test results for POS. 

 
Table 6. Summary of SH-test results for FS. 

It can also be noted from Tables 5 and 6 that the number of non-rejected FS is greater than 
the number of non-rejected POS. In most of the cases, the number of non-rejected solutions 
is doubled. Thus, the criterion used to maintain relevant solutions for the parsimony 
criterion was also useful to find alternative solutions according to the likelihood criterion. 
We should highlight that the SH-test was designed to be applied for one criterion, i.e. this is 
not a multi-criteria test. However, the SH-test shows that some of the POS are not 
significantly worse than the best trees resulting from a separate analysis. Thus, PhyloMOEA 
was able to find intermediate solutions (distinct trees) that are consistent with the best 
solutions obtained from the parsimony and likelihood criteria. 
Clade supports were calculated using the POS and FS. The support for a clade represents 
the proportion of trees which include such clade (Felsenstein, 2004). These values were 
compared with the clade posterior probabilities resulting from a Bayesian inference analysis. 
This analysis was performed for four datasets using Mr.Bayes. The number of Mr.Bayes 
iterations was fixed to 1.000.000 for rbcL_55 and mtDNA_186 datasets, 1.500.000 for the 
RDPII 218 dataset and 2.000.000 for the ZILLA_500 dataset. The evolutionary model 
employed was HKY85+Γ. The default values of the remaining Mr.Bayes'parameters were 
maintained. 
The clades shared by trees found by PhyloMOEA and Mr. Bayes were classified into 7 types 
in order to facilitate the analysis: 
• Type I: clade belongs only to intermediate trees. This type of clade is not present in the 

maximum parsimony and maximum likelihood trees; 
• Type II: clade is only in the maximum parsimony tree; 
• Type III: clade belongs to the maximum parsimony tree and intermediate trees; 
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• Type IV: clade is only in the maximum likelihood tree; 
• Type V: clade belongs to the maximum likelihood and intermediate trees; 
• Type VI: clade is included in both maximum parsimony and maximum likelihood trees; 
• Type VII: clade is contained in maximum parsimony, maximum likelihood and 

intermediate trees. 
Tables 7–10 illustrate the results of the comparison of the clades for rbcL_55, mtDNA_186, 
RDPII_218 and ZILLA_500 datasets, respectively. These Tables are divided into two parts 
which show the results for the shared clades of Mr.Bayes trees with PhyloMOEA POS and 
FS, respectively. The columns of these tables displays the clade type, the number of clades 
for each type, the PhyloMOEA mean clade support and the Mr.Bayes mean clade posterior 
probability. The values in bold indicate the highest support by PhyloMOEA and Mr.Bayes. 
Results from Tables 7–10 indicate that most of the clades shared between PhyloMOEA and 
Mr.Bayes trees belong to types I,III,V and VII. However, only clades type V and VII have 
average clade support larger than 0.5 in most of the cases. This imply that PhyloMOEA and 
Mr.Bayes support clades that are shared among maximum likelihood and/or maximum 
 

  
Table 7. PhyloMOEA and Mr.Bayes clade support for the rbcL_55 dataset. 
 

 
Table 8. PhyloMOEA and Mr.Bayes clade support for the mtDNA_186 dataset. 
 

 
Table 9. PhyloMOEA and Mr.Bayes clade support for the RDPII_218 dataset. 
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Table 10. PhyloMOEA and Mr.Bayes clade support for the ZILLA_500 dataset. 
parsimony and intermediate trees. Moreover, the difference between PhyloMOEA and 
Mr.Bayes average support is small for clades type VII; while the same difference for clades 
type V is greater. On the other hand, most of the clades support values for types I, II, III and 
VI are low. 
Figures 5(a)–5(d) shows the PhyloMOEA and Mr.Bayes clade support values for rbcL_55, 
mtDNA_186, RDPII_218 and ZILLA_500 datasets. Only support values for clades type V and 
VII are displayed in these Figures. Most of the points for which PhyloMOEA clade supports 
approximates Mr.Bayes posterior probabilities are located around the [1,1] coordinate. 
Moreover, these points correspond to type VII clades. 
 

 
Fig. 5. PhyloMOEA clade support vs. Mr.Bayes posterior probability values for the dataset tested. 
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7. Conclusions 
In this paper, we proposed an MOEA approach, called PhyloMOEA which solves the 
phylogenetic inference problem using maximum parsimony and maximum likelihood 
criteria. The PhyloMOEA's development was motivated by several studies in the literature 
(Huelsenbeck, 1995; Jin & Nei, 1990; Kuhner & Felsenstein, 1994; Tateno et al., 1994), which 
point out that various phylogenetic inference methods lead to inconsistent solutions. 
Techniques using parsimony and likelihood criteria yield to different trees when they are 
applied separately to the four nucleotide datasets used in the experiments. On the other 
hand, PhyloMOEA was applied to the four datasets and found a set of trees that represents 
a trade-off between these criteria. POS and FS trees obtained by PhyloMOEA were 
statistically evaluated using the SH-test. The results of this test suggest that several 
PhyloMOEA solutions are consistent with the criteria used. It is important to observe that 
the PhyloMOEA trees are not directly comparable with trees obtained by other phylogenetic 
reconstruction programs since these programs consider only one optimality criterion. 
Moreover, support values for clades included in trees obtained by PhyloMOEA were 
calculated. The clades were classified into several types according to the type of trees the 
clade is in: maximum parsimony, maximum likelihood or intermediate trees. Support values 
were compared with clade posterior probabilities reported by Mr.Bayes for the four test 
datasets used. The results show that PhyloMOEA clade support closely approximates 
Mr.Bayes posterior probabilities if the clades found in the set of trees correspond to 
intermediate and maximum likelihood/maximum parsimony trees. 
Despite the relevant results found by PhyloMOEA, there are aspects that could be addressed 
in order to improve the algorithm and corresponding results: 
• PhyloMOEA requires several hours to find acceptable Pareto-solutions if initial trees are 

poorly estimated. This problem can be improved taking into account local search 
strategies (Guindon & Gascuel, 2003; Stamatakis & Meier, 2004). PhyloMOEA's 
performance is also decreased by the likelihood calculation, which is computationally 
intensive. As mentioned in Section 5.3, there are other techniques that address this 
problem (Larget & Simon, 1998; Stamatakis & Meier, 2004); 

• The proposed algorithm does not optimize parameters of the evolution model 
employed in the likelihood calculation. These values can be included in each solution 
such that they can be optimized during the algorithm execution (Lewis, 1998); 

• PhyloMOEA uses only Fitch parsimony which has a unitary state change cost matrix. 
The use of more complex parsimony models or even generalized parsimony can 
improve the results (Swofford et al., 1996); 

• Clade support obtained from PhyloMOEA trees can be also compared with bootstrap 
support values. A bootstrap analysis, using parsimony and likelihood criteria 
separately, enables the separation of clades that best support the maximum parsimony 
and maximum likelihood trees. This could lead to a better comparison between 
PhyloMOEA and bootstrap clade support values; 

• This research has not investigated the metrics for convergence and diversity of the 
obtained Pareto front. Measurements for convergence are difficult to obtain since the 
Pareto front is unknown in this case. On the other hand, various diversity metrics found 
in the literature (Deb, 2001) can be investigated; 

The experiments have shown that PhyloMOEA can make relevant contributions to 
phylogenetic inference. Moreover, there are remaining aspects that can be investigated to 
improve the current approach. 
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1. Introduction    
Cells are multi-molecular entities whose biological functions rely on stringent regulations 
both temporally and specially. These regulations are achieved through a variety of 
molecular interactions including protein-DNA interactions, protein-RNA interactions and 
protein-protein interactions (PPIs). PPIs are extremely important in a wide range of 
biological functions from enzyme catalysis, signal transduction and more structural 
functions. Owing to advanced large-scale techniques such as yeast two-hybrid and mass 
spectrometry, interactomes of several model organisms such as Saccharomyces cerevisiae 
(Gavin et al., 2006; Ho et al., 2002; Ito et al., 2001; Krogan et al., 2006; Uetz et al., 2000), 
Drosophila melanogaster (Formstecher et al., 2005; Giot et al., 2003) and Caenorhabditis elegans 
(Li et al., 2004) have recently been extensively studied. Such large-scale interaction networks 
have provided us with a good opportunity to explore and decipher new information from 
them. However, there are some limitations of these large-scale data sets: 1) the experimental 
techniques for detecting PPIs are time-consuming, costly and labor-intensive; 2) the quality 
of certain datasets is uneven; and 3) technical limitations such as the requirement to tag 
proteins of interest still exist. As a complementary alternative, computational approaches 
that identify PPIs have been studied intensively for years and have yielded some interesting 
results. 
Proteins with at least one transmembrane domain constitute 20% to 35% of all known 
proteins, and therefore account for an important fraction of the proteins involved in 
biological mechanisms. However, for several reasons, the research on membrane protein 
interactions has been lagging behind. First, although the current available interactomes 
contain adequate interactions for analysis, the data sets still have a large amount of false 
positives. For example, compared to a gold-standard data set, identified protein-protein 
interactions from three frequently-used high-throughput methods (yeast two-hybrid (Uetz, 
et al., 2000), tandem affinity purification (TAP) (Gavin, et al., 2006) and high-throughput 
mass spectrometry protein complex identification (HMS-PCI)) (Ho, et al., 2002) yielded very 
low accuracy, coverage and overlap (von Mering et al., 2002). Second, some large-scale 
experimental techniques are biased against membrane proteins. For instance, in order to 
check whether proteins interact or not, they need to be expressed in the nucleus which may 
not be their native living environment. 
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The modified version of the yeast two-hybrid called the split-ubiquitin membrane yeast 
two-hybrid (MYTH) system (Stagljar et al., 1998) was developed for specially detecting the 
interactions between membrane proteins. However, it is still time-consuming and labor-
intensive, making it infeasible to generate a complete picture of the interactome of 
membrane proteins at current stage. Several groups have tackled this problem using 
computational approaches. Miller and colleagues (Miller et al., 2005) worked on identifying 
interactions between integral membrane proteins in yeast using a modified split-ubiquitin 
technique. To address the challenges presented in experimental techniques, Xia and 
colleagues (Xia et al., 2006) developed a computational method to predict the interactions 
between helical membrane proteins in yeast by integrating 11 genomic features such as 
sequence, function, localization, abundance, regulation, and phenotype using logistic 
regression. It however suffers low prediction power and low verifiability with experimental 
results. In addition to utilizing genomic features to predict protein-protein interactions, 
graph theory based on the topology of network is an alternative approach to infer protein-
protein relationship from protein interaction networks and showing interesting results 
(Nabieva et al., 2005; Valente & Cusick, 2006). Our group proposed a method to predict 
interactions between membrane proteins using a probabilistic model based on the topology 
of protein-protein interaction network and that of domain-domain interaction network in 
yeast (Zhang & Ouellette, 2008).   
The objective of this chapter is to provide an overview focused on recent approaches in 
predicting membrane proteins by computational methods including a new approach to 
predict membrane protein-protein interactions developed in our own laboratory. We also 
discuss the applicability of each computational approach and also the strengths, weaknesses 
and challenges of all of them. 

2. Experimental identification of PPIs between membrane proteins 
Currently, the yeast two-hybrid (Y2H) and the tandem affinity purification (TAP) following 
by mass spectrometry are the two mainstream experimental techniques to identify protein-
protein interactions on a large scale. In the yeast two-hybrid system, a bait protein 
containing a DNA binding domain hybridizes with a prey protein containing an activation 
domain. If the reporter gene is generated, it means that this pair of proteins interact with 
each other as the activation domain actives the transcription of the reporter gene. An 
alternative way is to tag a protein of interest and then express it in cells. The tagged protein 
and its interacting/binding proteins are purified as it binds to a column or bead. After 
purification, proteins interacted with the tagged protein are analyzed and identified through 
SDS-PAGE followed by mass spectrometry. These approaches have provided us with an 
important amount of valuable protein-protein interactions, which makes it possible to build 
a more robust interactome of cells. 
Besides some intrinsic limitations of these approaches such as high false positives and the 
requirement to tag proteins of interest, both of them are biased against membrane proteins. 
In the yeast two-hybrid system, the generation of the reporter gene product indicates an 
interaction. As the activation of the transcription of the reporter gene takes place in the cell 
nucleus, participating proteins must be localized to the nucleus. However, membrane 
proteins usually locate at the cell membrane instead of in the cell nucleus, which makes 
them excluded from the results of the yeast two-hybrid system. Due to their chemical 
properties, membrane proteins are difficult to manipulate in protein purification, too. 
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Therefore, interactions between membrane proteins are less likely to be detected in such 
approaches. 

 
Fig. 1. The split-ubiquitin membrane yeast two-hybrid system. Two membrane proteins are 
fused to NubG and Cub-TF, respectively. They both are expressed in different mating type. 
If two membrane proteins interact with each other upon mating as a diploid, the two halves 
of ubiquitin reconstitute as a quasi-native ubiquitin, a target of ubiqutin-specific proteases 
that cleave the ubiqutin. The reporter gene is transcribed if two membrane proteins interact 
with each other as uniqutin-specific proteases release TF into the nucleus and then actives 
the transcription of the reporter gene. 

To overcome the drawback of the above methods, an approach called the split-ubiquitin 
membrane yeast two-hybrid (MYTH) system was first developed by Stagljar et al. (Stagljar, 
et al., 1998) and then was further modified in recent years.  MYTH is a yeast-based genetic 
technology to detect detection of membrane protein interactions in vivo. This system is based 
on the split-ubiquitin approach, in which protein-protein interactions can direct the 
reconstitution of two ubiquitin halves. In such system (Figure 1), individual proteins are 
simultaneously introduced into the mutant yeast strain. The carboxy-terminal half of 
ubiquitin (Cub) and a LexA-VP16 transcription factor (TF) are fused onto the N- or C-
terminus of a membrane protein while the amino-terminal half of ubiquitin bearing an Ile 13 
Gly mutation (NubG-Prey or Prey-NubG) is fused onto the N- or C-terminus of another 
membrane protein. The protein fused to the Cub and TF can be referred to as the bait 
protein and is typically a known protein that the investigator is using to identify new 
binding partners. The protein fused to the NubG-Prey or Prey-NubG can be referred to as 
the prey protein and can be either a single known protein or a library of known or unknown 
proteins. If the bait protein interacts with the prey protein, quasi-native ubiquitin is 
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reconstituted. The resultant ubiquitin-specific proteases (UBPs) from the process of 
ubiquitin can cleave at the C-terminus of the Cub, which releases the TF, so some reporter 
genes such as HIS3, ADE2 and lacZ can be transcribed in the system. 
The split-ubiquitin approach has been widely applied and has yielded interesting results. 
Thaminy et al. (Thaminy et al., 2003) identified the interacting partners of the mammalian 
ErbB3 receptor using the split-ubiquitin approach, which proved the effectiveness of such 
system. Miller et al. (Miller, et al., 2005) further applied this approach to construct an array 
of yeast expressing the fusion of membrane proteins of interest on a large scale. Recently, 
more applications of the split-ubiquitin approach have been proposed. For example, novel 
interactors of the yeast ABC transporter Ycf1p (Paumi et al., 2007) and the human Frizzled 1 
receptor (Dirnberger et al., 2008) have been identified using such method.  

3. Computational prediction of PPIs between membrane proteins 
3.1 Multiple evidence-based 
Thanks to current advanced techniques, the relationship between genes can be evaluated 
based on various types of biological data such as protein-protein interaction data, genetic 
interaction data, gene co-expression data and phylogenetic profiles. These data sets help us 
better understand gene functions in the context of specific pathways or biological networks 
and also enables us to discover gene relationships too weak to be detected in  individual 
data type.  
The first attempt to predict interaction between membrane proteins on a large scale started 
from the work of Miller and colleagues (Miller, et al., 2005). They first generated a set of 
putative protein-protein interactions between membrane proteins through a modified split-
ubiquitin technique. In order to test how reliable these putative protein-protein interactions 
are, they employed an artificial intelligent approach, support vector machine (SVM), to 
predict interactions at the different confidence levels. For training purposes, they compiled a 
positive training set containing 56 protein-protein interactions between membrane proteins 
from their experimental results and the literatures and a negative training set containing 
random protein pairs. Besides 10 features derived from experiments such as the number of 
interactions that the Cub-PLV participates, other 8 genomic features such as Gene Ontology 
term similarity and co-expression are included as input parameters to the SVM algorithm 
(Table 1). Finally, they tested 1,985 putative interactions from the experiment using the 
trained SVM and identified 131 highest confident interactions, 209 higher confident 
interactions, 468 medium confident interactions and 1,085 low confident interactions. 
Xia et al. proposed a prediction method to identify 4,145 helical membrane protein 
interactions by optimally combining 14 genomic features (Table 1) (Xia, et al., 2006). After 
the fold enrichment analysis between interacting membrane protein pairs and all membrane 
protein pairs, they found 11 features are good indicators to predict interactions. Three 
features (relative protein abundance, relative mRNA expression and relative marginal 
essentiality) do not demonstrate statistically significant difference between interacting 
membrane protein pairs and all membrane protein pairs. The authors compiled a gold-
standard positive set by selecting all membrane protein pairs in the same MIPS complex and 
a gold-standard negative set by paring all membrane proteins not in the MIPS complexes. 
They applied both the logistic regression classifier and the Naïve Bayes classifier on the 
gold-standard data sets using 11 genomic features. They demonstrated that the integration-
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based classifier outperforms single evidence-based classifier. Also the logistic regression 
classifier has higher true positive rate than the Naïve Bayes classifier. 
 

Features Biological relevance Ref1 Ref2 
The number of interactions that 
the Cub-PLV participates 

A membrane protein was 
proved to interact with other 
membrane proteins in the 
experiment. 

 ∗ 

The number of interactions that 
the NubG participates 

A membrane protein was 
proved to interact with other 
membrane proteins in the 
experiment. 

 ∗ 

Weather both spots for a given 
NubG were found by the Cub-
PLV in either repetition 

A membrane protein was 
proved to interact with other 
membrane proteins in the 
experiment. 

 ∗ 

Whether repeated screens by 
using the same Cub-PLV found 
this NubG 

A membrane protein was 
proved to interact with other 
membrane proteins in the 
experiment. 

 ∗ 

The total number of times that 
this interaction was observed in 
the screen 

A membrane protein was 
proved to interact with other 
membrane proteins in the 
experiment. 

 ∗ 

Whether a reciprocal interaction is 
observed 

A reciprocal interaction 
represents the more reliable 
interaction. 

 ∗ 

Whether the reciprocal interaction 
was tested 

A reciprocal interaction 
represents the more reliable 
interaction. 

 ∗ 

The total number of times that 
this interaction was observed in 
this orientation or its reciprocal 

A reciprocal interaction 
represents the more reliable 
interaction. 

 ∗ 

The strength of growth of the 
yeast in the positive colonies 

Stronger interactions result in 
more growth of the yeast. 

 ∗ 

The relative strength of growth of 
the yeast in the positive colonies 
to the controls. 

Stronger interactions result in 
more growth of the yeast. 

 ∗ 

The mutual clustering 
coefficients, the meet/min 
coefficient, the geometric 
coefficient, and the 
hypergeometric coefficient 

High coefficient score indicates 
interactions. 

 ∗ 

The difference in the codon 
enrichment correlation (CEC) 
between the two proteins 

Interacting proteins might have 
comparable codon compositions.

 ∗ 
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GO functional similarity A pair of membrane proteins 
tends to interact with each other 
if they share very similar Gene 
Ontology (GO) terms. 

∗ ∗ 

MIPS functional similarity A pair of membrane proteins 
tends to interact with each other 
if they share very similar 
functional categories as defined 
in the MIPS database. 

∗  

Membrane co-localization A pair of membrane proteins 
tends to interact with each other 
if they are assigned to the same 
cellular localization based on the 
SGD database. 

∗ ∗ 

Total protein abundance A pair of membrane proteins 
tends to interact with each other 
if the sum of their protein 
abundance is high. 

∗  

Total mRNA expression A pair of membrane proteins 
tends to interact with each other 
if the sum of their mRNA 
expression level is high. 

∗ ∗ 

Relative protein abundance A pair of membrane proteins 
tends to interact with each other 
if the absolute difference 
between their protein abundance 
is low. 

∗  

Relative mRNA expression A pair of membrane proteins 
tends to interact with each other 
if the absolute difference 
between their mRNA expression 
levels is low. 

∗ ∗ 

mRNA expression correlation A pair of membrane proteins 
tends to interact with each other 
if the correlation of their mRNA 
expression profiles over time-
course experiments is high.  

∗ ∗ 

Transcriptional co-regulation A pair of membrane proteins 
tends to interact with each other 
if they are related by a same 
transcription factor. 

∗  

Co-essentiality A pair of membrane proteins 
tends to interact with each other 
if they both are essential genes. 

∗ ∗ 
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Total marginal essentiality A pair of membrane proteins 
tends to interact with each other 
if the sum of their marginal 
essentiality is high. 

∗  

Relative marginal essentiality A pair of membrane proteins 
tends to interact with each other 
if the absolute difference 
between their marginal 
essentiality is low. 

∗  

Genetic interaction A pair of membrane proteins 
tends to interact with each other 
if they also genetically interact 
with each other. 

∗  

Gene fusion, phylogenetic profile, 
gene neighborhood, gene cluster 

A pair of membrane proteins 
tends to interact with each other 
if they have high score in the 
Prolinks database representing 
functional relatedness. 

∗  

Table 1. A list of biological features indicating the interactions between membrane proteins. 
Ref1 represents the method proposed by Xia et al. and Ref2 represents the method proposed 
by Miller et al. A star sign means this feature has been applied to the corresponding 
approach. 

3.2 Protein primary sequence and structure-based 
Helix-helix interactions within a membrane protein or between membrane proteins play a 
critical role in protein folding and stabilization. Therefore, it has been of great importance to 
test if a pair of membrane proteins could interact with each other through helix-helix 
interactions.  
Eilers et. al proposed a method to calculate helix-helix packing values at the level of 
individual atoms, amino acids and entire proteins (Eilers et al., 2002). They found that 
packing values could be utilized to differentiate transmembrane proteins and soluble 
proteins as transmembrane helices pack more tightly. Besides packing values, they also 
demonstrated that helix contact plot, a method to calculate distances between all backbone 
atoms of each interacting helix pair, is another feature that can be used to classify 
transmembrane proteins and soluble proteins because the helix contact plot of 
transmembrane proteins display a broader distribution than that of soluble proteins. This 
study provides us with a good starting point to predict interactions between membrane 
proteins using helix packing and interhelical propensity. 
Instead of using physical properties between residues, Fuchs et al. developed an approach 
to predict helical interactions based on the co-evolving mechanism of residues (Fuchs et al., 
2007). The underlying hypothesis is that residues within the same particular protein 
structure tend to be mutated concurrently. They first generated a set of co-evolving residues 
from seven different prediction algorithms and the helix-helix interactions were then 
predicted by comparing helix pairs to their structural information in the Protein Data Bank 
(PDB) combined with this set of co-evolving residues. With this approach, interacting 
helices could be predicted at the specificity of 83% and the sensitivity of 42%. It is 
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demonstrated that evolutionarily conserved residues are a valuable feature to predict 
membrane protein interactions. 
As more and more structural information related to residues becomes available, more 
sophisticated computational approaches are needed to improve prediction performance. In 
a recent publication, a two-level hierarchical method based on support vector machine 
(SVM) was proposed. In this study, they built two layers of SVMs (Lo et al., 2009). The first 
layer of SVM was to predict contact residues. Three input features were included at this 
level: residue contract propensity, evolutionary profile and relative solvent accessibility. The 
prediction of interactions between contact residues was implemented in the second layer of 
SVM in which contract residues were used as inputs. They selected five different features in 
this level: residue pair contact propensities, evolutionary profile, relative solvent 
accessibility, helix-helix interaction type and helical length. Tested on a set of 85 interacting 
helical pairs, 768 contact pairs and 939 contact residues, this method reaches to the 
sensitivity of 67% and specificity of 95%. This approach further proves the notion that the 
integration of diverse structural and sequence information with residue contact propensities 
is a good direction to predict helix-helix interactions and membrane protein interactions. 

3.3 Network topology-based 
A network topology-based approach was proposed by our group (Zhang & Ouellette, 2008). 
It is able to predict interactions between membrane proteins using a probabilistic model 
based on the topology of protein-protein interaction network and that of domain-domain 
interaction network in yeast. It has been demonstrated that the more likely a pair of proteins 
are functionally related to each other, the more likely they are to share interaction partners 
(Brun et al., 2003). Moreover, domain-domain interactions have also been shown as 
indicators of protein interactions due to the binding of modular domains or motifs (Jothi et 
al., 2006; Pawson & Nash, 2003). Therefore, we sought to examine the hypothesis that two 
proteins that share same interactors may interact with each other themselves. In order to 
address this question, we considered the internal protein-protein and domain-domain 
relationship of a pair of proteins and their protein-protein interaction partners.  
Protein-protein interaction and domain-domain interaction data from disparate sources 
were integrated and then a log likelihood scoring method was applied on all putative 
integral membrane proteins in yeast to predict all putative integral membrane protein-
protein interactions based on a cut-off threshold. It is shown that our approach improves on 
other predictive approaches when tested on a “gold-standard” data set and achieves 74.6% 
true positive rate at the expense of 0.43% false positive rate. Furthermore, it is also found 
that two integral membrane proteins are more likely to interact with each other if they share 
more common interaction partners. Recently, we proposed an improved approach to predict 
membrane PPIs by incorporating one more piece of evidence – gene ontology (GO) semantic 
similarity. 
A scoring model can infer how closely a pair of genes is related in a protein-protein 
interaction network. According to previous research, if two proteins interact with a very 
similar group of proteins, they are likely to interact with each other (Ho, et al., 2002; Yu et 
al., 2006), thus, for a given pair of genes, we first mapped them to a pair of proteins, and 
then found a common set of interactors for this pair of genes and protein-protein 
interactions within the whole set of common interactors. A scoring method was employed to 
calculate the likelihood that a group of genes (a pair of query genes) and the whole set of 
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their common interactors are more densely connected (the number of PPIs within a group of 
proteins) than would be expected at random (Kelley & Ideker, 2005): 

 
(1) 

where S is a set of common interactors plus a given pair of genes and I is a set of protein-
protein interactions among those genes. PI(x, y) is an indicator function that equals 1 if and 
only if the interaction (x, y) occurs in I and otherwise 0. For network N, interactions are 
expected to occur with high probability for every pair of proteins in S. In our work, we 
followed the previous knowledge to estimate β and set β to 0.9 (Mewes et al., 2006). For 
network Ncontrol, the probability of observing each interaction cx,y was determined by 
estimating the fraction of all control networks with randomly expected degree distribution 
which also contain that protein-protein interaction. Comparable control networks were 
randomly generated by rewiring interaction networks with same node number from the 
same gene set and same number of degrees, and by repeating the process 100 times. 
Should a given pair of proteins has a documented list of domain-domain interactions in 
iPfam, then we will have two sets of domains corresponding to two proteins. Hence, given a 
pair of proteins and their common interaction partners, a lot of domain-domain pairs among 
these sets of domains are possible. A modified model (2) implies dense domain-domain 
interactions existing in a group of common interactors of a given gene pair. A related log-
odds score was used to evaluate the probability that the domain-domain interactions 
bridging between these two genes and their common interaction partners were denser than 
random based on the above scoring method: 

 

 

(2) 

Compared to the previous equation, DI(m, n) is an indicator function that equals 1 if and 
only if the domain-domain interaction (m,n) occurs in I and otherwise 0; Dx/Dy is the 
number of domains in each protein x and y; for network Ncontrol, the probability of observing 
each domain-domain interaction cx,y was determined by estimating the fraction of all control 
networks with randomly expected degree distribution that also contain that domain-domain 
interactions occurring between two proteins.  
In order to measure the functional similarity between a pair of proteins, we developed a 
new scoring approach based on GO terms. Given two groups of GO terms (M, N) 
representing two proteins, the functional similarity between a pair of proteins was 
calculated by the following formula: 

SGO (M ,N ) = j=1

n

max(GO(i, j))+
j=1

m

max(GO(i, j))
i=1

n

∑
i=1

m

∑
m + n

 (3) 
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where M is the set of unique GO terms of the protein x; N is the set of unique GO terms of 
the protein y;  m is the number of GO terms in the set M; n is the number of GO terms in the 
set N; GO(i,j) is the similarity score between GO term i and GO term j. The similarity scores 
between a pair of GO terms were computed based on the algorithm G-SESAME, a new 
advanced method to measure the semantic similarity of GO terms by considering the 
locations of their ancestor terms of the two specific terms (Wang et al., 2007).  
To put the above three types of scores together, the final scoring function for a given pair of 
proteins was then: 

Sfinal = Sp + Sd + Sgo  (4) 

For each possible interaction between integral membrane proteins, we calculated three 
different scores: PPI score, DDI score and a combined PPI/DDI/GO score according to 
(1)(2)(3)(4). This generated a table with 996,166 interacting pairs of proteins, each with three 
interaction probability scores. We compared the performance of our proposed approach by 
different types of scores: PPI score, DDI score, GO score and the combined score. A ROC 
curve was plotted by measuring sensitivity and specificity when tested against the gold-
standard data set at different cut-off values (Fig. 2). The area under curve is 0.95 for 
combined score, 0.85 for PPI, 0.74 for DDI and 0.8 fro GO terms, respectively, which 
indicates the good prediction performance of the proposed scoring method. Better 
performance can be achieved if we used combined scores rather than using PPI scores or 
DDI scores alone. It is estimated that there are around 5,000 interactions existing between 
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Fig. 2. Curve of receiver operating characteristics (ROC) plotted by the different cut-off 
values when tested against the gold-standard data set. The area under the curve plotted by 
PPIs combined with DDIs and GO terms is 0.95, 0.85 for PPI, 0.74 for DDI and 0.8 for GO, 
respectively. 
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membrane proteins [12]. Based on that number, we achieved 81.2% true positive rate 
(sensitivity) at the expense of 0.42% false positive rate (1 – specificity) for a cut-off score of 
455, which predicted 4,531 interactions between integral membrane proteins, about 0.61% 
coverage of all possible interactions among integral membrane proteins. 
The map of the interactome of integral membrane protein was built based on 4,531 
predicted protein-protein interactions between integral membrane proteins at the cutoff 
value of 455 (Fig. 3) by Cytoscape (Shannon et al., 2003).  53.4% (281/527) proteins in the 
interactome map contains at least one transmembrane helix according to the predictions by 
TMHMM. 80% (392/513) interactions within gold-standard data set overlaps with those 
within the interactome map but only accounts for 8.4% of the whole interactome of integral 
membrane proteins. By checking the topology properties of the interactome map, we found 
that most interactions in the gold-standard data set are in the same complex such as lipid 
biosynthesis, energy couple proton transport, protein biosynthesis, protein targeting to 
mitochondria and ATP synthesis coupled electron transport, which reflects the 
characteristics of performed experiments (detecting protein-protein interactions between 
same complexes). Our predicted interactions indicates some new members in some 
complexes such as transport, secretion, vesicle-mediated transport and intracellular 
transport, which is probably caused by some false negatives from experimental methods. 
 

 
Fig. 3. The interactome map of membrane proteins in yeast. Nodes are represented as 
membrane proteins, and edges are represented as our predicted interactions between a pair 
of membrane proteins. Red nodes represent membrane proteins in the gold-standard data 
set and red edges represent interactions in the gold-standard data set. 
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One example is that in the group of protein import into nucleus, KAP95 and SSA1 do not 
interact with other proteins within the group according to the gold-standard data set, 
however they both play a critical role on nuclear localization signal (NLS)-directed nuclear 
transport by interacting other proteins to guide transport across the nuclear pore complex 
(Denning et al., 2001; Liu & Stewart, 2005). Furthermore, observed from the map, some 
interactions not within the gold-standard data set are found to bridge two complexes. For 
example, NUP116 and ATP14 are predicted to interact each other connecting two groups: 
protein import into nucleus and energy couple protein transport. Although there is no 
evidence demonstrating the direct interaction between NUP116 and ATP14, some research 
results indicate that ATP14 might be involved in ATP synthesis in the process of protein 
importing into nucleus (Dingwall & Laskey, 1986; Vargas et al., 2005). Interestingly, we 
found some new complexes such as peroxisome organization and biogenesis related to the 
functions of peroxisome membrane proteins such as peroxisome biogenesis and 
peroxisomal matrix protein import (Eckert & Erdmann, 2003; Heiland & Erdmann, 2005; 
Honsho et al., 2002). 

4. Challenges in predicting membrane PPIs 
Complemented by experimental methods, computational approaches provide us with a 
promising path to reveal a more complete picture of the membrane protein interactome. 
However, we should be aware of several challenges in predicting membrane PPIs.  
First, we are still in lack of reliable membrane PPIs, which results in the difficulty of 
compiling the gold-standard data set. Currently, positive interaction data is collected from 
protein pairs in the same protein complex and negative interaction data is derived from 
those pairs not in the same protein complex. The data quality problem arises as the complex 
data itself is limited by experimental approaches and contains false positive PPIs. On the 
other hand, the complex data is biased against membrane proteins, therefore, making it 
difficult to access the prediction performance of various approaches due to the scarcity of 
membrane PPIs in the gold-standard data set and the small coverage of membrane 
interactome. Furthermore, another concern is that large amount of negative data may bring 
false negatives during the training.  
Moreover, it is challenging to interpret the prediction results from different approaches. 
Inconsistency of predicted membrane proteins has been observed. For example, Miller and 
colleagues (Miller, et al., 2005) identified 1,949 putative non-self interactions among 705 
integral membrane proteins. Xia and colleagues (Xia, et al., 2006) predicted 4,145 helical 
membrane protein interactions among 516 proteins. Our group recently predicted 4,660 PPIs 
between integral membrane proteins using the PPIs network and the DDIs data (Zhang & 
Ouellette, 2008). Interestingly, only 79 protein-protein interactions are overlapped between 
the results from all three approaches (Figure 4). The reason for these differences among 
three large-scale sets of membrane protein interactions may be that each approach focuses 
on different aspects. The experimental result from Miller et al. is reliable but probably 
contains false positives and false negatives due to the intrinsic limitation of experimental 
techniques they employed. The approach proposed by Xia et al. is more focused on the 
interactions between complexes instead of on binary protein-protein interactions, so the 
result from Xia et al. is prone to predict interactions in the complex. Our approach 
emphasizes the interactions through the topological properties of PPI and DDI networks 
and appears to improve on the above methods because these interactions are probably 



New Perspectives in Predicting Membrane Protein-protein Interactions  

 

169 

important features for membrane protein interactions. The better prediction accuracy may 
be achieved by more sophisticated approaches by incorporating various biologically 
meaningful evidence such as network topological features, protein primary sequences and 
structures.  
Currently, computational membrane protein interaction prediction is intensively studied 
but focuses only on yeast. Theoretically, methodologies can be applicable to a variety of 
organisms. However, even with the unprecedented increase of heterogeneous biological 
data, the data of some organisms such as Mus musculus, Drosophila melanogaster and 
especially Homo sapiens is far from complete. Therefore, prediction approaches based on 
multiple lines of evidence undertake the challenge caused by data incompleteness. 

 
Fig. 4. Comparison of the prediction results from three large-scale methods. There are 438 
predicted protein-protein interactions overlapping between data sets from Miller et al. and 
Zhang and Ouellette, 79 between Miller et al. and Xia et al., 372 between Xia et al. and 
Zhang and Ouellette, respectively. 

5. Conclusions 
In this chapter, we reviewed various computational approaches to predict protein-protein 
interactions between membrane proteins. In spite of some limitations caused by 
incompleteness of existing experimental data, computational methods have demonstrated 
reasonable prediction accuracy, which make them to be good resources to provide testable 
hypotheses for experimental validation. With an emergence of different types of high-
throughput data at the systematic level, it prompts us to develop and propose 
computational methods to identify PPIs between membrane proteins by integrating these 
data sets. Therefore, complemented with various prediction methods and experimental 
approaches, such studies lead us to elucidate a cell’s interactome.  
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1. Introduction 
Over the past few decades’ rapid development in genomics, proteomics, metabolomics and 
other types of omics research, a tremendous amount of data related to molecular biology 
have been produced. Understanding and exploiting these data is now the key to the success 
of advancing molecular biology, and this requirement has been stimulated the development 
and expansion of bioinformatics (Altman, 2007; Jones, et al., 2006). As a fast growing 
interdisciplinary scientific area, bioinformatics can be defined in several ways, but the 
emphasis is always on the use of information processing methods to manage, analyze and 
interpret information from biological data, sequences and structures, with promising 
applications to biomarker discovery and pharmaceutical design. Important sub-disciplines 
within the field include (Pal, et al., 2006): 
a. Development and implementation of tools and databases that enable efficient access, 

usage and management of various types of information. 
b. Analysis and interpretation of various types of data, including nucleotide and amino 

acid sequences, protein domains, and protein structures. 
c. Development of new algorithms to assess relationships among members of large data 

sets, such as methods for protein family classification, protein structure and function 
prediction, gene location and correlation networks. 

d. Simulation of biological process using computational models to assist experiment 
design and implementation, such as protein functional site finding, disease biomarker 
discovery and drug design. 

The post-genome era is characterized by a major expansion in the available biological data. 
Many important bioinformatics problems are so comprehensive that an exhaustive search of 
all potential solutions is always challenging, and most likely impossible. Yet another 
approach of using biologists’ current library of standard constructive and approximate 
algorithms is impractical in terms of time, money, and computational power (Fogel & 
Corne, 2002). The researchers are then either forced to pose a simpler hypothesis which 
typically leads to wrong understanding of problem, or to attempt to develop computational 
algorithms which can search large solution spaces in a reasonable time.  
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Therefore, evolutionary computation algorithms have been gaining the attention of 
researchers for solving current bioinformatics problems (Fogel, et al., 2008). As a class of 
randomized search and optimization techniques which inspired by the process of biological 
evolution, evolutionary computation can be used to search very large and complex spaces 
effectively and return good solutions in a rapid fashion. The majority of current 
implementations of evolutionary computation methods descend from three strongly related 
but independently developed approaches: genetic algorithms (GAs), evolutionary 
programming (EG) and evolution strategies (ES). In general, an evolutionary computation 
method first generates an initial population of solutions. It then repeats a simulated natural 
evolutionary processes which includes reproduction, mutation, recombination, natural 
selection and survival of the fittest (Eberbach, 2005). In the last decade, evolutionary 
computation has experienced a tremendous growth in applications for bioinformatics. 
The purpose of this chapter is to provide a survey on the role of evolutionary computation 
methods, especially GAs, in current bioinformatics tasks. Some important bioinformatics 
topics, such as sequence analysis, protein structure and function prediction, protein-protein 
interaction prediction and microarray analysis will be explained here. Conclusions and 
some future research directions are also discussed in this chapter. 

2. Sequence analysis 
Since the development of high-throughput techniques in biological experimental methods 
during the last two decades, the rate of addition of new sequences to the database increases 
continuously. However, such a collection of sequences does not, by itself, help our 
understanding of the biology of different organisms. Therefore, the multiple sequence 
alignment (MSA) is of great interest to biologists since it can provide scientific insight of 
inferring evolutionary history or discovering conserved regions among closely related 
protein, ribonucleic acid (RNA) or Deoxyribonucleic acid (DNA) sequences (Pei, 2008; 
Pirovano & Heringa, 2008; Sobel & Martinez, 1986). In many cases, the MSA assumes the 
target sequences have an evolutionary relationship by which they share a lineage and are 
descended from a common ancestor. This assumption makes MSA a fundamental and 
crucial tool in analysis of sequences which come from the same or a close family. MSA is 
often used to assess sequence conservation of protein domains, secondary and tertiary 
structures. 
MSA is the process of lining up a set of sequences in the “best possible way”.  Sum-of-pairs 
score (SP-score)  is usually used to determine the “best possible way” to build an alignment. 
For k sequences of length at most n via dynamic programming, the SP-score can be solved 
in 2 )k knθ（  steps. Unfortunately, this method is almost always time-consuming and 
unpractical even for a small number of sequences. Moreover, MSA is known as NP-hard 
(Just, 2001; Wang & Jiang, 1994), and hence finding the best solution is intractable. However, 
it can be solved by treating the MSA problem as an optimization problem and therefore, the 
evolutionary computation methods can be applied to search the positions of gap for aligning 
multiple sequences. 
Notredame and Higgins proposed a MSA approach based on genetic algorithm and an 
associated software package called SAGA (sequence alignment by genetic algorithm) 
(Notredame & Higgins, 1996). This method uses a genetic algorithm to select from an 
evolving population the alignment which optimizes the COFFEE Objective Function (OF) 
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(Notredame, et al., 1998). The OF is a measure of the consistency between the multiple 
alignments and a library of CLUSTALW pairwise alignments (Thompson, et al., 2002). The 
approach was tested in a set of 13 cases based mainly on alignments of sequences of known 
tertiary structure. It was claimed by the authors that this method can find globally optimal 
multiple alignments or very close to it in a reasonable time frame for completely unaligned 
sequences. But it also has been mentioned that SAGA is still fairly slow for large test cases 
(e.g. with >20 or so sequences). This genetic algorithm-based method was extended and 
improved to a new package, named RAGA (Notredame, et al., 1997), for alignment of two 
homologous RNA sequences whose secondary structure of one of them is known. 
A similar work by Zhang et al. (Zhang & Wong, 1997) was described to align sequences in a 
two-step method. This first step identifies matches whose input is the sequences to be 
aligned and output is the matched subunits. The matched subunits are organized on a form 
called pre-alignment. The pre-alignment is the input of the second step, which identifies 
mismatches (i.e. deletion, insertions and substitutions). The output of the second step is an 
alignment. In this work, the task of identifying matches is converted into a search problem 
using a genetic algorithm. To apply GA, each biomolecular sequence was represented by the 
subunits. The alignment of sequence was converted from characters space to subunits space 
and therefore, the computational cost was decreased dramatically. 
Other relevant researches of solving multiple sequence alignment using evolutionary 
computation methods can be found in (Fisz, 2006; Gondro & Kinghorn, 2007). Each of these 
methods relies on the principle similar to SAGA: a population of multiple alignments 
evolves by selection, combination and mutation. The main difference between these 
methods and SAGA are the design of better mutation operators that can improve the 
efficiency and the accuracy of the algorithms. 

3. Protein structure prediction 
A protein is a chain of amino acid residues that folds into a specific native tertiary structure 
under certain physiological conditions. There are 20 amino acids which can be divided into 
several classes based on their size and other physical and chemical properties. Proteins fold 
into one or more specific spatial conformations that enable the proteins to perform their 
biological function. In order to understand the functions of proteins at a molecular level, it is 
often necessary to determine the three dimensional structure of each protein. Protein 
structure prediction is, therefore, one of the most important research topics in 
bioinformatics.  
A number of studies using the evolutionary computation method for protein structure 
prediction have been made in the last decades. As the first attempt to predict protein 
structure using GAs, Dandekar and Argos used a tetrahedral lattice and structural 
information was encoded as gene (Dandekar & Argos, 1996; Dandekar & Argos, 1997). Each 
residue has seven possible conformations encoded by three bits. Each gene therefore is 
encoded with 3×N bits long, where N is the number of residues. The fitness function 
contains terms that encouraged strand formation and pairing and penalizes steric clashes 
and nonglobular structures. The function was parameterized on a set of four helix bundle 
proteins and on one of the β-structure proteins reproduced. The success of this method 
relies on the correct pre-assignment of secondary structure, and may introduce bias in the 
potential towards the experimental structure. 
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Sun et al. (Sun, et al., 1999) reduced the molecular structure of each protein to its backbone 
atoms and each side chain was approximated by a single virtual united-atom. A statistical 
potential of mean force derived from known protein structures was used to assess fitness. A 
conformation library of peptide fragments containing 2-5 amino acid residues was extracted 
from known protein structures to construct initial conformations. Fragments were selected 
from the library based on sequence similarity, which appears that it will introduce a strong 
bias, particularly for the longer fragments. A root mean square error of 1.66Å on average to 
the crystal structure can be achieved for melittin, a protein of 26 residues. Similar results for 
avian pancreatic polypeptide inhibitor and apamin were also obtained. 
Another earlier work discussing the reduced three-dimensional lattice protein using genetic 
algorithm was reported by Unger et al. (Unger & Moult, 1993). In this method, each peptide 
was considered as only single point units without side chains and represented by three bits to 
encode five degrees of freedom. All residues are divided into two groups: hydrophobic and 
hydrophilic. The evaluation function scored -1 for each pair of non-bonded hydrophobic 
neighbors. The algorithm begins with a population of identical unfolded configurations, and 
the population size is 200. The string of bond angles along the chain was used for describing 
a conformation. Each generation begins with a series of K mutations being applied to each 
individual in the population, where K is encoding length. These mutations are filtered using 
a Monte Carlo step, and mutations resulted in better energy will be accepted. Cross-over 
sites were selected randomly. Three types of Montel Carlo (MC) methods were applied for 
comparing the performance of GA. Test data consisted of a series of ten randomly produced 
27 length sequences and ten randomly produced 64 length sequences. Experimental results 
indicted that GA can find the global minimum for all but one sequence. MC also can find the 
global minimum for short sequences, but it is not for the longer sequences. Although this 
work demonstrated the potential advantages of GA-base methods for protein structure 
prediction, this simple model did not test its applicability to real proteins. 
Other investigations on protein structure prediction are available in (Arunachalam, et al., 
2006; Contreras-Moreira, et al., 2003; Cooper, et al., 2003). These studies show that GAs is 
superior to MC and other search methods for protein structure prediction. 

4. Protein-protein recognition and docking 
Protein-protein recognition represents a fundamental aspect of biological function. 
Although the protein structures are now routinely determined by experimental methods, it 
is much more difficult to ascertain the structure of protein complexes. When two molecules 
are in close proximity, it can be energetically favorable for them to bind together tightly. The 
molecular docking study focuses on the prediction of energy and physical configuration of 
binding between two molecules. The success of docking and the resulting docked 
configuration can refine the design of drug molecules. Methods for protein docking, such as 
DOCK (Kuntz, et al., 1982), FLOG (Miller, et al., 1994), and GOLD (Jones, et al., 1997), are 
widely used in drug-discovery programs. The principal techniques currently available for 
protein docking are: molecular dynamics, MC method, genetic algorithms, fragment-based 
methods, complementarity methods and distance geometry. Here, we will focus on the EC-
based protein docking approaches. 
GOLD (Genetic Optimisation for Ligand Docking) is a docking program that uses a GA 
search strategy and includes rotational flexibility for selected receptor hydrogens along with 
full ligand flexibility (Jones, et al., 1997). For searching the space of available binding modes 
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efficiently, hydrogen bond motifs have been directly encoded into the GA. The fitness 
function is the sum of a hydrogen bond term, a 4-8 inter-molecular dispersion potential and 
a 6-12 intra-molecular dispersion potential for the internal energy of the ligand. Each 
complex was run using an initial population of 500 individuals into five sub-populations, 
and migration of individual chromosomes between sub-populations was permitted. The 
GOLD validation test set is one of the most comprehensive docking methods. It comprises 
of 100 different protein complexes. This program achieved a 71% of success rate based 
primarily on a visual inspection of the docked structures. An extension to GOLD can be 
found in another work (Verdonk, et al., 2003) which included an addition of hydrophobic 
fitting points used in the least squares fitting algorithm to generate the ligand orientation. 
Gardinaer et al. (Gardiner, et al., 2001) described a GA for protein-protein docking method, 
in which the proteins were represented by dot surfaces calculated using the Connolly 
program (Connolly, 1986). The GA was used to move the surfaces of one protein relative to 
the other to locate the area of greatest surface to complementarity between the two. Surface 
dots were deemed complementary if their normals are opposed, their Connolly shape type 
is complementary, and their hydrogen bonding or hydrophobic potential is fulfilled. For a 
possible orientation of the query with respect to the target, the number of matching dots and 
the number of clashes between query dots and target interior points were counted. If any 
dots matched, penalty was determined by the number of clashes; otherwise, penalty was set 
as a very big value (100,000 in the paper). The fitness function was then given by the number 
of matches subtracted penalty. The algorithm was tested on 34 large protein-protein 
complexes where one or both proteins had been crystallized separately. Parameters were 
established for 30 of the complexes that have at least one near-native solution ranked in the 
top 100. 
AutoDock software (Goodsell, et al., 1996) uses a genetic algorithm as a global optimizer 
combined with energy minimization as a local search method. In this implementation, the 
ligand is flexible and the receptor is rigid. The ligand-receptor was represented as a grid. 
The genetic algorithm uses two point crossover and mutation operators. The fitness function 
comprises five terms: a directional 12-10 hydrogen bond term; a coulombic electrostatic 
potential; a term proportional to the number of sp3 bonds in the ligand to represent 
unfavourable entropy of ligand binding due to the restriction of conformational degrees of 
freedom; and a desolvation term. This scoring function is based loosely around the AMBER 
force field from which protein and ligand parameters are taken. The desolvation term is an 
inter-molecular pairwise summation combining an empirical desolvation weight for ligand 
carbon atoms, and a pre-calculated volume term for the protein grid. Each of the five terms 
are weighted using an empirical scaling factor determined using linear regression analysis 
from a set o 30 protein-ligand complexes with known binding constants. Now the software 
has been updated to version 4.0. 
A number of other investigations can be found in (Gardiner, et al., 2001; Gardiner, et al., 
2003; Kang, et al., 2009; Po & Laine, 2008).  

5. Conclusions 
This chapter provides an overview of some bioinformatics tasks and the relevance of the 
evolutionary computation methods, especially GAs. There are two advantages of GA-based 
approaches. One is that GAs are easier to run in parallel than single trajectory search 
procedures, and therefore allow groups of processors to be utilized for a search. The other is 



 New Achievements in Evolutionary Computation 

 

178 

that GAs appear to be more efficient in finding acceptable solutions than other semi-random 
move methods such as MC (Pedersen & Moult, 1996).  
Although the current GA-based methods are very useful and can produce elegant solutions 
for bioinformatics tasks, there are some general characteristics that might limit the 
effectiveness of GAs. First, the basic selection, crossover, and mutation operators are 
common to all applications. Second, a GA requires extensive experimentation for the 
specification of several parameters so that appropriate values can be identified. Third, GAs 
involves a large degree of randomness and different runs may produce different results. So 
it is necessary to incorporate problem specific domain knowledge into GAs to reduce 
randomness and computational time and current research is going on in this direction also. 
However, as an optimization algorithm and an effective searching tool, GAs can be used in  
other bioinformatics tasks, such as gene expression and microarray data, gene regulatory 
network identification, construction of phylogenetic trees, protein functional site prediction, 
characterization of metabolic pathways, and so on. 
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1. Introduction 
Recently reinforcement learning has received much attention as a learning method (Sutton, 
1988; Watkins & Dayan, 1992). It does not need a priori knowledge and has higher capability 
of reactive and adaptive behaviors. However there are some significant problems in 
applying it to real problems. Some of them are deep cost of learning and large size of action-
state space. The Q-learning (Watkins & Dayan, 1992), known as one of effective 
reinforcement learning, has difficulty in accomplishing learning tasks when the size of 
action-state space is large. Therefore the application of the usual Q-learning is restricted to 
simple tasks with the small action-state space. Due to the large action-state space, it is 
difficult to apply the Q-learning directly to real problems such as control problem for robots 
with many redundant degrees of freedom or multiple agents moving cooperatively one 
another. 
In order to cope with such difficulty of large action-state space, various structural and 
dividing algorithms of the action-state space were proposed (Holland, 1986; Svinin et al., 
2001; Yamada et al., 2001). In the dividing algorithm, the state space is divided dynamically, 
however, the action space is fixed so that it is impossible to apply the algorithm to the task 
with a large action space. In the classifier system, “don’t care” attribute is introduced in 
order to create general rules. But, that causes partially observable problems. Furthermore, 
an ensemble system of general and special rules should be prepared in advance. 
Considering these points, Ito & Matsuno (2002) proposed a GA-based Q-learning method 
called “Q-learning with Dynamic Structuring of Exploration Space Based on Genetic 
Algorithm (QDSEGA).” In their algorithm, a genetic algorithm is employed to reconstruct 
an action-state space which is learned by Q-learning. That is, the size of the action-state 
space is reduced by the genetic algorithm in order to apply Q-learning to the learning 
process of that space. They applied their algorithm to a control problem of multi-legged 
robot which has many redundant degrees of freedom and a large action-state space. By 
applying their restriction method for the action-state space, they successfully obtained the 
control rules for a multi-legged robot by their QDSEGA. However, the way to apply a 
genetic algorithm in their approach seems so straightforward. Therefore we have proposed 
a crossover for QDSEGA (Murata & Yamaguchi, 2005; Murata & Yamaguchi, 2008). Through 
their computer simulations on a control problem of a multi-legged robot, they could make 
about 50% reduction of the number of generations to obtain a target state of the problem. 
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In this chapter, we apply the QDSEGA with the neighboring crossover to control multiple 
agents. An application of QDSEGA to multiple agent system has been considered (Ito and 
Gofuku, 2003; Ito et al., 2004) though, they still applied genetic operators straightforward. 
We apply the neighboring crossover to Multi Agent Simulations (MAS) problem and show 
its effectiveness to reduce the number of actions in a Q-table. We also propose a deletion 
algorithm to make more compact Q-table in MAS problem. We employ the application in Ito 
et al. (2004) where a Q-table is developed for homogeneous multiple agents. Computer 
simulation results show that the size of Q-table can be reduced by introducing the proposed 
neighboring crossover and the deletion algorithm. 

2. QDSEGA 
In this section, we briefly explain the outline of QDSEGA (Ito & Matsuno, 2002; Ito & 
Gofuku, 2003; Ito et al., 2004; Murata & Yamaguchi, 2005). QDSEGA has two dynamics. One 
is a learning dynamics based on Q-learning and the other is a structural dynamics based on 
Genetic Algorithm. Figure 1 shows the outline of QDSEGA. In QDSEGA, each action is 
represented by an individual of a genetic algorithm. According to actions defined by a set of 
individuals, an action-state space called Q-table is created. Q-learning is applied to the 
created Q-table. Then the learned Q-table is evaluated through simulations. A fitness value 
for each action is assigned according to Q-table. After that, each individual (i.e., each action) 
is modified through genetic operations such as crossover and mutation. We show some 
details in these steps in the following subsections, and show our proposed method for 
crossover and a deletion algorithm in the next section. 

2.1 Action encoding 
Each individual expresses a selectable action on the learning dynamics. It means that a set of 
individuals is selected by genetic operations, and a learning dynamics is applied to the 
subset. After the evaluation of the subset of actions, a new subset is restructured by genetic 
operations. 
 

 

Create Initial Random Population 

Convert Gene to Action

Create Q-table

Q-learning

Selection

Reproduction (Crossover, Mutation) 

Start 

Calculate fitness from Q-table 

End 

 
Fig. 1. Outline of QDSEGA 
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Fig. 2. Q-table created from a set of individuals 

2.2 Q-table 
An action-state space called Q-table is created from the set of individuals. When several 
individuals are the same code, only one action is used in the action-state space to avoid the 
redundancy of actions. Figure 2 shows this avoidance process. 

2.3 Learning dynamics 
In QDSEGA, the conventional Q-learning (Watkins & Dayan, 1992) is employed as a 
learning dynamics. The dynamics of Q-learning are written as follows: 

 )},(max),({),()1(),( asQasrasQasQ
a

′′++−←
′

γαα ,  (1) 

where ),( asQ  is a Q-value of the state s  and the action a , r  is the reward, α  is the 
learning rate, and γ  is the discount rate. 

2.4 Fitness 
The fitness )( iafit  for each action is calculated by the following equation: 

 )()()( iufiQi afitkafitafit ⋅+= ,  (2) 

where )( iQ afit  is a fitness value for action ia  calculated from Q-table, )( iu afit  is a fitness 
value for action ia  calculated from the frequency of use, and fk  is a non-negative constant 
value to determine the ratio of )( iQ afit  and )( iu afit . We show the detail explanation of 
these factors in this subsection.  
(a) Fitness of Q-table 
The fitness of Q-table )( iQ afit  is calculated from Q-values in the current Q-table. In order to 
calculate )( iQ afit  for each action ia  the following normalization is taken place in advance 
as for the Q-values in the current Q-table. 
First, calculate the maximum and minimum value of each state as follows:  
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Then Q′  of the normalized Q-table is given as follows: 
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where p is a constant value which means the ratio of reward to penalty. After this 
normalization process, we fix the action ia  and sort ),( iasQ′  according to their value from 
high to low for all states. We define the sorted ),( iasQ′  as ),( is asQ′ , and ),1( is aQ′  means the 
maximum value of ),( iasQ′ , and ),( iss aNQ′  means the minimum value of ),( iasQ′ , where 
sN  is the size of states. Using the normalized and sorted Q-value ),( is asQ′ , the fitness of 

action ia  is calculated as follows:  
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where jw  is a weight which decides the ratio of special actions to general actions.  
(b) Fitness of Frequency of Use 
The fitness of frequency of use )( iu afit  is introduced to save important actions. That fitness 
is defined as follows:  

 ∑ == aN
j juiuiu aNaNafit 1 )(/)()( ,  (8) 

where aN  is the number of all actions of one generation and )( iu aN  is the number of times 
which ia  was used for in the Q-learning of this generation. Important actions are used 
frequently. Therefore the actions with high fitness value of )( iu afit  are preserved by this 
fitness value.  

2.5 Genetic algorithm and neighboring crossover 
Ito & Matsuno (2002) says “the method of the selection and reproduction is not main subject 
so the conventional method is used.” They employed a crossover that exchanges randomly 
selected bits between the parent individuals according to the crossover probability cP . They 
mutated each bit according to the mutation probability mP . They did not replace parent 
individuals with offspring. Therefore the number of individuals is increased by the genetic 
operations. As for the elite preserving strategy, they preserve 30% individuals with the 
highest fitness value. 
Since they did not modify genetic operators for QDSEGA, we have proposed a crossover 
operation for the multi-legged robot control problem (MRC problem) in (Murata & 
Yamaguchi, 2005; Murata & Yamaguchi, 2008). We developed a neighboring crossover for 
QDSEGA for MRC problems. 
The crossover employed in QDSEGA (Ito & Matsuno, 2002) causes drastic change in the 
phenotype of a solution since randomly selected bits are changed between two solutions. If 
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the change of solution in phenotype is so drastic, the good part of the solution may be 
broken. In order to avoid causing such drastic change among solutions, we proposed a 
crossover between similar parent solutions. We define the similarity by the number of the 
same genes in the same locus of a chromosome. We introduced a parameter simk  to denote 
the similarity. Thus, the crossover is applied among individuals that have the same genes 
more than simk . 
This kind of the restriction for the crossover has been proposed in the research area of 
distributed genetic algorithms (DGAs). Researches on DGAs can be categorized into two 
areas: coarse-grained genetic algorithms (Tanese, 1989; Belding, 1995) and fine-grained 
genetic algorithms (Mandelick & Spiessens, 1989; Muhlenbein et al., 1991; Murata et al., 
2000). In the coarse-grained GAs, a population, that is ordinarily a single, is divided into 
several subpopulations. Each of these subpopulations is individually governed by genetic 
operations such as crossover and mutation, and subpopulations communicate each other 
periodically. Algorithms in this type are called the island model because each subpopulation 
can be regarded as an island. On the other hand, several individuals are locally governed by 
genetic operations in fine-grained GAs. In a fine-grained GA, each individual exists in a cell, 
and genetic operations are applied to an individual with individuals in neighboring cells. 
The DGAs are known to have an advantage to keep the variety of individuals during the 
execution of an algorithm, and avoid converging prematurely.  
While we don’t define any solution space such as cells or islands in our proposed crossover, 
our restriction in crossover operation may have the same effect of keeping variety in a 
population and attain the effective search. 

3. Transportation task using Q-learning 
3.1 Transportation task 
We consider a transportation task shown in Ito & Gofuku (2003) and Ito et al. (2004). Figure 
3 shows a transportation task used in this chapter. There is a world with 25 cells and a goal 
cell shown in “G” where five agents exist in Cell 0 and Cell 4. The aim of the transportation 
task is to convey a load shown in “L1” to the goal cell. In order to carry “L1” to “G”, the 
 

 G 

15 16 17 18 19

10 11 12 13 14

5 6 7 8 9

0 1 2 3 4 

20 21 22 23 24
L2 

L1 

1 3
5 7 9

2 4
6 8 10

SW

 
Fig. 3. Transportation task 
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other load shown in “L2” should be removed from Cell 22. Simultaneously, the door of “G” 
should be opened before carrying “L1”. To open the door, the switch shown in “SW” should 
be pushed by an agent in Cell 23. 
Each load has a mobile direction. As shown in Figure 3, “L1” can be moved only in the 
vertical direction, and “L2” only in the horizontal direction. To move a load, more than one 
agent should push it toward the same movable direction. Therefore, to convey “L1” to “G”, 
agents should remove “L2” from Cell 22, open the door, and move “L1” to the goal. 
In order to control actions of each agent, Ito & Gofuku, (2003); Ito et al., (2004) employed 
their QDSEGA where the state of the agent is handled as a chromosome of an individual to 
which genetic operators are applied. Figure 4 shows the chromosome representation of the 
agent location in Figure 3. Each chromosome consists of genes with the same number of 
agents. The figure in each gene shows the identification number of cell where the agent 
locates. Since the agents with odd number locate in Cell 0, all genes for those agents have 0 
as its value. 
 

Chromosome 0 4 0 4 0 4 0 4 0 4

1 2 3 4 5 6 7 8 9 10

 
Fig. 4. Chromosome representation for the agents in Figure 3 
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Fig. 5. An example of Q-table with a set of chromosomes 

3.2 Q-learning in our simulation 
Q-table of the Q-learning is generated using a set of chromosomes. Figure 5 shows an 
example of Q-table that shows the relations of agent locations. 
In Figure 5, each column in the Q-table shows a chromosome generated by genetic 
operations. Rows of the table consist of the same chromosomes of the columns. That is, the 
chromosomes in the rows act as states in the Q-table, and the chromosomes in the column 
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act as actions the agent can take in the fired state. When the ten agents locates in the start 
position (Cell 0 or Cell 4 as in Fig. 3), the current position is shown as (0, 4, 0, 4, 0, 4, 0, 4, 0, 4) 
in the table. If the target position (10, 3, 11, 4, 3, 13, 21, 11, 18, 22) is selected as an action from 
the current position, Agent “1” moves from Cell 0 to Cell 10, Agent “2” moves from Cell 4 to 
Cell 3, and so on. 
With this Q-table, Q-learning is applied. In order to move each agent to the target position, 
Ito & Gofuku, (2003) and Ito et al., (2004) proposed the following rules. 
 

<R1: The rule to decide a path to a target position> 
                If txix ≠)(  Then xxixixix t Δ))(sgn()()1( −−=+ , )()1( iyiy =+ , 
                Else if tyiy ≠)(  Then yyiyiyiy t Δ))(sgn()()1( −−=+ , )()1( ixix =+ , 
                Else )()1( ixix =+ , )()1( iyiy =+ . 
 

where tt yx ,  are the coordinates of the target position, and )(),( iyix  are the coordinates of 
the current position of the agent in time i. Using this rule, the agent moves in horizontal 
direction first, then it moves vertically to the target position. 
 

<R2: The rule to avoid a collision> 
               If obstacle is on the course that is given by R1 Then 
                  If the obstacle is load Then Employ R3 
                  Else Don’t move 
               Else Move using R1 
 

Since the collision between agents is assumed to avoid using traffic rules, Ito & Gofuku, 
(2003); Ito et al., (2004) considered only the collision between an agent and a load. If the load 
can not be carried by the agent alone, it should stop until other agents come. 
 

<R3: The rule to move the load> 
               If Load is on the course that is given by R1 Then Push the Load to the way that the agent 
               has to go 
               Else Move using R1 
 

If the way that the agent has to go is not the direction to which the load can be moved, the 
agent should stop beside the load. 
 

<R4: The rule to open the door> 
                If Switch is in a cell where the agent stops Then Turn on the switch to open the door 
                Else Nothing is done 

3.3 A deletion algorithm to create more compact control table 
When we observe a Q-table developed by QDSEGA, some actions or chromosomes are not 
used in moving multiple agents. That is, unnecessary actions are generated through genetic 
operations. In order to make a compact Q-table, we mark the chromosomes that are not 
used for a prespecified term in Q-Learning process. 

4. Computer simulation 
4.1 Parameter specifications 
In this section, we show the simulation results to compare the conventional QDSEGA and 
the QDSEGA with the neighboring crossover shown in Subsection 2.5 and the deletion 



 New Achievements in Evolutionary Computation 

 

188 

algorithm in Subsection 3.3. The neighboring crossover can be applied to the parent 
solutions that have the same genes more than simk . In this paper, we employed 

8,6,4,2,0=simk . Since 10=simk  means the crossover between the same chromosomes, 
we did not use. When 0=simk , the crossover is applied between any parent solutions. The 
deletion algorithm is applied when the reward for the developed Q-table becomes larger 
than 100. This means that the deletion algorithm is applied after attaining the goal by 
multiple agents. 
We employed the same parameter specifications as shown in Ito & Gofuku (2003) and Ito et 
al. (2004) except the learning rate and the discount rate in Equation (1). We found better 
specifications for those parameters by preliminary simulations: 
 

[Genetic Algorithm] 
  The number of individuals: 300, 
  Selection: Roulette selection, 
  Type of crossover: uniform crossover, 
  The probability of crossover: 0.2, 
  Type of mutation: change the value among valid cell number, 
  The probability of mutation: 0.001, 
  The number of generations: 100, 
  Weights in Equation (2):  200=fk , 

  Weights in Equation (7): 5.0,5.01 ==
sNww , ),...,2(0 1−== si Niw . 

 

[Q-learning] 
  Reward: When “L1” reaches the goal, 100=r , 
  When “L1” moves up or “L2” is removed, 20=r , 
                               When “L1” moves down or “L2” blocks the course of “L1”, 20−=r , 
                               When any agent can not move to the target position, 10−=r , 
  Learning rate in Equation (1): 9.0=α , 
  Discount rate in Equation (1): 1.0=γ , 
  ε -greedy action selection: 10% random action, 
  The number of trials of each learning dynamics: 10,000.  

4.2 Simulation results 
Figures 6 and 7 show that the average reward for the obtained Q-table and an average 
number of actions (or situations) in Q-table. The average reward for Q-table is calculated 
over the last 100 trials among 10,000 trials. The maximum average reward is 130. These 
figures show that the proposed QDSEGA with 4,2=simk  could obtain the better or similar 
average reward with comparing to the algorithm without the neighboring crossover. As for 
the number of actions, the larger simk  enables the less number of actions as shown in Figure 
7. This shows that a compact Q-table can be obtained using the proposed neighboring 
crossover. Obtaining a compact Q-table enables users to find important actions to control 
the multiple agents. 
In order to obtain a compact Q-table with high average reward, we apply our proposed 
neighboring crossover after the average reward becomes larger than 100. Since the 
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neighboring crossover is applied to the similar parent solutions, that crossover often 
produces the offspring that is the same chromosome. This causes the reduction of the size of 
Q-table. As shown in Figure 7, the number of actions in the Q-table reduced rather than the 
previous QDSEGA. However, this reduction may prevent improving the performance in the 
average reward. 
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Fig. 6. Gain attained by Q-learning generated by QDSEGA 
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Fig. 7. The number of actions in Q-table generated by QDSEGA 

Figures 8 and 9 show that the average reward and the average number of actions in Q-table. 
From these figures, we can see that the proposed QDSEGA can keep the high average 
reward with any value of simk . Figure 9 shows that the large value of simk  enables to 
reduce the number of actions in Q-table. 



 New Achievements in Evolutionary Computation 

 

190 

0
20
40
60
80

100
120
140

0 20 40 60 80 100

Generation

A
ve

ra
ge

 R
ew

ar
d

W
or

se
 <

==
> 

B
et

te
r

Previous k_sim=2 k_sim=4
k_sim=6 k_sim=8

 
Fig. 8. Gain attained by Q-learning generated by QDSEGA applied the neighboring 
crossover when obtaining 100 reward 
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Fig. 9. The number of actions in Q-table generated by QDSEGA applied the neighboring 
crossover when obtaining 100 reward 

Although the neighboring crossover has an effect to reduce the number of actions, there are 
some actions that are not used in moving agents. Therefore, we apply the deletion algorithm 
in Subsection 3.3. Figures 10 and 11 show the results of QDSEGA with neighboring 
crossover and the deletion algorithm. From these figures, we can see that the deletion 
algorithm does not degrade the performance in the average reward but have a fine effect to 
reduce the number of actions. By combining the neighboring crossover and the deletion 
algorithm, we could obtain more compact control table with high performance than using 
the previous algorithms. 
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Fig. 10. Gain attained by Q-learning generated by QDSEGA applied the neighboring 
crossover and the deletion algorithm when obtaining 100 reward 
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Fig. 11. The number of actions in Q-table generated by QDSEGA applied the neighboring 
crossover and the deletion algorithm when obtaining 100 reward 

Table 1 shows the average number of actions obtained at the final generation. From this 
table, we can see that the number of actions is reduced by the neighboring crossover and the 
deletion algorithm. Especially the deletion algorithm could reduce it without degrading the 
performance of the developed control table using neighboring crossover. 
After obtaining a compact control table, we can examine the states and actions that are used 
to reach the goal. We can see that in order to achieve the task to bring “L1” to the goal, only 
two actions are required from the initial states shown in Figure 3. For example, the two 
actions in Figure 12 are enough to convey “L1” to the goal with ten agents. Figure 13 shows 
the states or positions of the agents according to the obtained states shown in Figure 12. 
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Without Deletion Algorithm Previous 2 4 6 8 
# of actions 222.2 210.8 196.9 149.2 96.5 

 
With Deletion Algorithm Previous 2 4 6 8 
# of actions 46.6 39.0 28.0 30.2 25.1 

Table 1.  Size of the Q-table at the final generation 
 

 

Initial State 0 4 0 4 0 4 0 4 0 4

Transition 23 1 15 7 12 3 24 12 16 19

Final State 21 15 23 22 16 22 16 7 16 21

1 2 3 4 5 6 7 8 9 10

 
Fig. 12. Succession of the states to achieve the goal 

 
Fig. 13. Achievement of carrying the load to the goal 
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5. Conclusion 
In this chapter, we show the effectiveness of the neighboring crossover and the deletion 
algorithm especially in reducing the size of the Q-table. By reducing the Q-table, it becomes 
easy to read the Q-table that is required for attaining the objective to reach the goal and 
minimizes the memory to store the developed control table. 
As for other further study, we can bring other objective functions to achieve the goal. In 
Figures 6, 8, and 10, we compared the average reward as shown in the previous study (Ito 
and Gofuku, 2003; Ito et al., 2004). From these figures, we could minimize the total moving 
cost of all the agents to achieve the goal. 
Furthermore, Ito and Gofuku (2003) examined the effectiveness of QDSEGA for multi-agent 
system with heterogeneous ability. We can show the effectiveness of the neighboring 
crossover in that problem too. 
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1. Introduction  
1.1 Evolutionary algorithms 
EAs are often considered as an example of artificial intelligence and a soft computing approach. 
Their unique ability to search for complete and global solutions to a given problem makes 
EAs a powerful problem solving tool which combine such important characteristics as 
robustness, versatility and simplicity. 
Historically, there exist several branches of EAs, namely Genetic Algorithms, Genetic 
Programming, Evolutionary Programming and Evolutionary Strategies. Their development 
started independently in the 1960s and 70s. Nevertheless, all of them are based on the same 
fundamental principle - evolution. ‘Evolution’ is used here in its Darwinian sense, the 
advance through ‘survival of the fittest’. 
Despite of a remarkable simplicity, EAs have proven to be capable of solving many practical 
tasks. The first and obvious application is numerical optimisation (minimisation or 
maximisation) of a given function. However, EAs are capable of much more than function 
optimisation or estimation of a series of unknown parameters within a given model of a 
physical system. Due to, in a large part, their stochastic nature, EAs can create such complex 
structures as computer programs, architectural designs and neural networks. Several 
applications of EAs have been known to produce a patentable invention (Koza et al., 1996, 
Koza et al., 1999 and Koza et al., 2003).  
Unfortunately, such a truly intelligent application of EAs is rarely used for practical 
purposes. GP and similar algorithms often require a supercomputing power to produce an 
optimal solution for a practical task. This may be overcome, at least partially, by narrowing 
the search space. 
A general engineering design practice is to propose a new design based on existing 
knowledge of various techniques (not uncommonly even from other fields) and no less 
important, intuition. Following this, the proposal is analysed, tried on a real system or its 
mathematical model, findings and errors are analysed again, the design is modified (or 
rejected) and the process continues until a satisfactory solution is found. 
EAs work basically on the same principle, although, obviously, using less analytical analysis 
but more trial-and-error approach. It was found, however, that the process of selecting the 
most suitable solutions at each stage and producing the next iteration variants is, overall, 
largely intelligent and heuristic. EAs are capable to answer not only the question how to do 
something (how to control, in particular), but also the question what to do in order to meet 
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the objective. It is therefore appealing to apply such a promising automated technique to a 
problem with no general solution at hand. 
The guidance and flight control is not a totally unstudied area where no convincing guesses 
can be made and where no parallels with the existing solutions are possible. This fact allows 
to watch, understand and guide, to a certain extent, the process of evolution. It also enables 
to optimise the EA for the purposes of control design. 
The latter is especially useful because there are still very little research done on artificial 
evolution of structures of controllers in particular. An overwhelming majority of EA 
applications is concerned with numeric optimisation. A few proponents of a more advanced 
use (e.g. Koza et al., 2000, De Jong & Spears, 1993) are keen to show the real scope of 
possible applications, including controller design. 

1.2 Unmanned aerial vehicles and shipboard recovery 
Over the past two decades, the use of UAVs is becoming a well accepted technique not only 
for the military applications but also in the civilian arena.  Typical applications of UAVs 
range from such traditional military missions as battlefield surveillance, reconnaissance and 
target acquisition to atmospheric research, weather observation, coastal and maritime 
surveillance, agricultural and geological surveying, telecommunication signals retranslation, 
and search and rescue missions.  
The critical parts of a UAV mission are the launch and recovery phases. Although some 
UAVs can be conventionally operated from runways, the ability of UAVs to be operated 
from confined areas, such as remote land sites, ships and oil rigs, greatly increase their 
practical applications. Such operations generally require the aircraft to either have Vertical 
Take- Off and Landing (VTOL) capability or some form of launch and recovery assistance. 
Unlike launch, the ways of UAV recovery are numerous. Probably the most widely used 
method, apart from runway landing, is the parachute assisted recovery. Unfortunately, 
parachute recovery can hardly be used when the landing area is extremely limited (for 
example, a ship’s deck) and in the presence of high winds and strong gusts.  
The first practicable and widely used solution for shipboard recovery of a fixed-wing UAV 
was capturing by an elastic net. This method has been employed for the USN RQ-2 Pioneer 
UAV, first deployed in 1986 aboard the battleship USS Iowa. The recovery net is usually 
stretched above the stern of the ship and the aircraft is flown directly into the net. A serious 
disadvantage of this method is that it is quite stressful for the aircraft. Nevertheless, due to 
simplicity of the recovery gear and reasonably simple guidance and flight control during the 
approach, this technique is still very popular for maritime operations. 
Other methods include such techniques as deep stall and perched recovery and various 
forms of convertible airframes. However, these methods often imply very specific 
requirements to the UAV design and high complexity of control.  
In this work a novel recovery method is proposed. This method, named Cable Hook Recovery, 
is intended to recover small to medium-size fixed-wing UAVs on frigate size vessels. It is 
expected to have greater operational capabilities than the Recovery Net technique, which is 
currently the most widely employed method of recovery for similar class of UAVs, 
potentially providing safe recovery even in very rough sea and allowing the choice of 
approach directions. 
There are two distinct areas in recovery design: design of the recovery technique itself and 
development of a UAV controller that provides flight control and guidance of the vehicle in 
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accordance with the requirements of this technique. The controller should provide 
autonomous guidance and control during the whole recovery process (or its airborne stage). 
It should be noted that there exists a number of control design techniques applicable to the 
area of guidance and flight control. They all have different features and limitations, 
producing the controllers with different characteristics. It is expected that linear control 
techniques will not be sufficient for control of the aircraft through the whole recovery stage 
due to large atmospheric disturbances, ship motion and aircraft constraints.  
Under these conditions when so many factors remain uncertain during the process of 
development, even the very approach to the control problem is unclear. It is desirable that 
the controller design methodology allow to produce an optimally suitable controller even 
when faced with such uncertainties and that could be done with application of EAs. 

2. Evolutionary algorithms 
Over the hundred years of aviation history, various linear control methods have been 
successfully used in the aerospace area due to their simplicity and analytical justifiability. 
Despite their natural limitations, linear control techniques still remain as one of the most 
accepted design practices. However, growing demands to the performance of aircraft, and 
on the other hand, a remarkable increase in available computation power over the past years 
have led to significant growth if the popularity of nonlinear control techniques. 
A principal difficulty of many nonlinear control techniques, which potentially could deliver 
better performance, is the impossibility or extreme difficulty to predict theoretically the 
behaviour of a system under all possible circumstances. Therefore, it becomes a challenging 
task to verify and validate the designed controller under all real flight conditions. There is a 
need to develop a consistent nonlinear control design methodology that enables to produce 
a required controller for an arbitrary nonlinear system while assuring its robustness and 
performance across the whole operational envelope at the same time. 
The Evolutionary Algorithms (EAs) is a group of such stochastic methods which combine 
such important characteristics as robustness, versatility and simplicity and, indeed, proved 
the success in many applications, such as neural network optimisation (McLean &. Matsuda, 
1998), finance and time series analysis (Mahfoud & Mani, 1996), aerodynamics and 
aerodynamic shape optimisation (McFarland & Duisenberg, 1995), automatic evolution of 
computer software and, of course, control (Chipperfield & Flemming, 1996).  

2.1 Introduction to evolutionary algorithms 
Evolutionary algorithm is an umbrella term used to describe computer-based problem 
solving systems which employ computational models of evolutionary processes as the key 
elements in their design and implementation. All major elements found in natural evolution 
are present in EAs. They are: 
• Population, which is a set of individuals (or members) being evolved; 
• Genome, which is all the information about an individual encoded in some way; 
• Environment, which is a set of problem-specific criteria according to which the fitness 

of each individual is judged; 
• Selection, which is a process of selecting of the fittest individuals from the current 

population in the environment; 
• Reproduction, which is a method of producing the offspring from the selected 

individuals; 
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• Genetic operators, such as mutation and recombination (crossover), which provide and 
control variability of the population. 

The process of evolution takes a significant number of steps, or generations, until a desired 
level of fitness is reached. The ‘outcome’ should not be interpreted as if some particular 
species are expected to evolve. The evolution is not a purposive or directed process. It is 
expected that highly fit individuals will arise, however the concrete form of these 
individuals may be very different and even surprising in many real engineering tasks. None 
of the size, shape, complexity and other aspects of the solution are required to be specified 
in advance, and this is in fact one of the great advantages of the evolutionary approach. The 
problem of initial guess value rarely exists in EA applications, and the initial population is 
sampled at random. 
The first dissertation to apply genetic algorithms to a pure problem of mathematical 
optimisation was Hollstien’s work (Hollstien, 1971). However, it was not until 1975, when 
John Holland in his pioneering book (Holland, 1975) established a general framework for 
application of evolutionary approach to artificial systems, that practical EAs gained wide 
popularity. Until present time this work remains as the foundation of genetic algorithms 
and EAs in general. 
Now let us consider the very basics of EAs. A typical pseudo code of an EA is as follows: 

Create a {usually random} population of individuals; 
Evaluate fitness of each individual of the population; 
until not done {certain fitness, number of generations etc.}, do 
Select the fittest individuals as ‘parents’ for new generation; 
Recombine the ‘genes’ of the selected parents; 
Mutate the mated population; 
Evaluate fitness of the new population; 
end loop. 

It may be surprising how such a simple algorithm can produce a practical solution in many 
different applications. 
Some operations in EAs can be either stochastic or deterministic; for example, selection may 
simply take the best half of the current population for reproduction, or select the individuals 
at random with some bias to the fittest members. Although the latter variant can sometimes 
select the individuals with very poorly fitness and thus may even lead to temporary 
deterioration of the population’s fitness, it often gives better overall results. 

2.2 Evolutionary algorithm inside 
There are several branches of EAs which focus on different aspects of evolution and have 
slightly different approaches to ongoing parameters control and genome representation.  
In this work, a mix of different evolutionary methods is used, combining their advantages. 
These methods have the common names: Genetic Algorithms (GA), Evolutionary 
Programming (EP), Evolutionary Strategies (ES) and Genetic Programming (GP).  
As noted above, all the evolutionary methods share many properties and methodological 
approaches.  

2.2.1 Fitness evaluation 
Fitness, or objective value, of a population member is a degree of ‘goodness’ of that member 
in the problem space. As such, fitness evaluation is highly problem dependent. It is 
implemented in a function called fitness function, or more traditionally for optimisation 
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methods, objective function. The plot of fitness function in the problem space is known as 
fitness landscape. 
The word ‘fitness’ implies that greater values (‘higher fitness’) represent better solutions. 
However, mathematically this does not need to be so, and by optimisation both 
maximisation and minimisation are understood. 
Although EAs are proved themselves as robust methods, their performance depends on the 
shape of the fitness landscape. If possible, fitness function should be designed so that it 
exhibits a gradual increase towards the maximum value (or decrease towards the 
minimum). In the case of GAs, this allows the algorithm to make use of highly fit building 
blocks, and in the case of ESs—to develop an effective search strategy quickly. 
In solving real world problems, the fitness function may be affected by noise that comes 
from disturbances of a different nature. Moreover, it may be unsteady, that is, changing over 
time. Generally, EAs can cope very well with such types of problem, although their 
performance may be affected. 
It is accepted that the performance of an optimisation algorithm  is measured in terms of 
objective function evaluations, because in most practical tasks objective evaluation takes 
considerably more computational resources than the algorithm framework itself. For 
example, in optimisation of the aerodynamic shape of a body, each fitness evaluation may 
involve a computer fluid flow simulation which can last for hours. Nevertheless, even for 
simple mathematical objective functions EAs are always computationally intensive (which 
may be considered as the price for robustness). 
The computation performance may be greatly improved by parallelisation of the fitness 
evaluation. EAs process multiple solutions in parallel, therefore they are extremely easily 
adopted to parallel computing. 
Another useful consequence of maintaining a population of solutions is the natural ability of 
EAs to handle multi-objective problems. A common approach – used in this work -  to 
reduce a multiobjective tasks to a single-objective one, by summing up all the criteria with 
appropriate weighting coefficients, is not always possible. Unlike single point optimisation 
techniques, EAs can evolve a set of Pareto optimal solutions simultaneously. A Pareto 
optimal solution is the solution that cannot be improved by any criterion without impairing 
it by at least one other criterion, which is a very interesting problem on its own. 

2.2.2 Genome representation 
In EA theory, much as well as in natural genetics, genome is the entire set of specifically 
encoded information that fully defines a particular individual. This section focuses only on 
numeric genome representation. However, EAs are not limited to numeric optimisations, 
and for more ‘creative’ design tasks a more sophisticated, possibly hierarchical, genome 
encoding is often required. In fact, virtually any imaginable data structure may be used as a 
genome. This type of problem is addressed in Section 2.5 Genetic Programming. 
A commonly used genome representation in GAs is a fixed length binary string, called 
chromosome, with real numbers mapped into integers due to convenience of applying 
genetic operators, recombination (crossover) and mutation. 
Accuracy is a common drawback of digital (discrete) machines, and care should be taken 
when choosing appropriate representation. For example, if 8 bit numbers are used and the 
problem determines the range of [–1.0; 1.0], this range will be mapped into integers 
[00000000; 11111111] ([0; 255] decimal)1. As 255 corresponds to 1.0, the next possible integer, 
254, will correspond to 0.99215686, and there is no means of specifying any number between 
0.99215686 and 1.0. 
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The required accuracy is often set relative to the value, not the range. In this case, linear 
mapping may give too low accuracy near zero values and too high accuracy towards the 
end of the range. This was the reason for inventing the so called floating point number 
representation, which encodes the number in two parts: mantissa, which has a fixed range, 
and an integer exponent, which contain the order of the number. This representation is 
implemented in nearly all software and many hardware platforms which work with real 
numbers. 
Another type of genome encoding which should be mentioned is the permutation encoding. 
It is used mostly in ordering problems, such as the classic Travelling Salesman Problem, 
where the optimal order of the given tokens is sought after. In this case, a chromosome can 
represent one of the possible permutations of the tokens (or rather their codes), for example, 
‘0123456789’ or ‘2687493105’ for ten items. When this type of encoding is used, special care 
should be taken when implementing genetic operators, because ‘traditional’ crossover and 
mutation will produce mostly incorrect solutions (with some items included twice and some 
items missing). 
Finally, a vector of floating point real values can be used as a chromosome to represent the 
problem that deals with real values. However, domain constraints handling should be 
implemented in most cases, as the floating point numbers, unlike integers, have virtually no 
highest and lowest values (in a practical sense). Moreover, special recombination and 
mutation operations should be used in this case. 

2.2.3 Selection 
Selection is the key element of all evolutionary algorithms. During selection, a generally 
fittest part of the population is chosen and this part (referred as mating pool) is then used to 
produce the offspring. 
The requirements for the selection process are somewhat controversial. On the one hand, 
selection should choose ‘the best of the best’ to increase convergence speed. On the other 
hand, there should be some level of diversity in the population in order to allow the 
population to develop and to avoid premature convergence to a local optimum. This means 
that even not very well performing individuals should be included in the mating pool. 
This question is known as the conflict between exploitation and exploration. With very little 
genetic diversity in a population, new areas in the search space become unreachable and the 
process stagnates. Although exploration takes valuable computation resources and may give 
negative results (in terms of locating other optima), it is the only way of gaining some 
confidence that the global optimum is found (Holland, 1975). 
It should be noted that the optimal balance between exploitation and exploration is problem 
dependent. For example, real-time systems may want a quick convergence to an acceptable 
sub-optimal solution, thus employing strong exploitation; while engineering design which 
uses EAs as a tool is often interested in locating various solutions across the search space, or 
may want to locate exactly the global optimum. For the latter tasks, greater exploration and 
thus slower convergence is preferred. 
Balance between exploitation and exploration can be controlled in different ways. For 
example, intuitively, stronger mutation favours greater exploration. However, it is selection 
that controls the balance directly. This is done by managing the ‘strength’ of selection. Very 
strong selection realises exploitation strategy and thus fast convergence, while weak 
selection allows better exploration. 
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A general characteristic that describes the balance between ‘perfectionism’ and ‘carelessness’ 
of selection is known as selection pressure or the degree to which the better individuals are 
favoured. Selection pressure control in a GA can be implemented in different ways; a very 
demonstrative parameter is the size of the mating pool  relative to the size of the population. 
As a rule, the smaller the mating pool, the higher the selection pressure. 
A quantitative estimation of the selection pressure may be given by the take-over time 
(Goldberg & Deb, 1991). With no mutation and recombination, this is essentially the number 
of generations taken for the best member in the initial generation to completely dominate 
the population. 
The efficiency of one or another selection method used in EAs largely depends on 
population properties and characteristics of the whole algorithm. A theoretical comparison 
of the selection schemes may be found in (Goldberg & Deb, 1991). 
First, all selection methods can be divided into two groups: stochastic and deterministic. 
Deterministic methods use the fitness value of a member directly for selection. For example, 
the best half of the population may be selected or all individuals with the fitness better than 
a given value may be included in the mating pool. In contrast, stochastic selection methods 
use fitness only as a guide, giving the members with better fitness more chances to be 
selected allowing greater exploration. However, deterministic methods can also be tuned to 
allow greater exploration. For example, every second member in a sorted by fitness list can 
be taken for reproduction instead of the best half of the population. 
One of the simple ways to reduce the possible impact of stochastic sampling errors is to 
guarantee that the best, or elite, member(s) is always selected for reproduction. This 
approach is known as Elitism. In effect, elitism is the introduction of a portion of 
deterministic selection into a stochastic selection procedure. In most cases, elitism assumes 
that the elite member is not only selected, but also propagated directly to the new 
population without being disrupted by recombination or mutation. This approach ensures 
that the best-so-far achievement is preserved and the evolution does not deteriorate, even 
temporarily. 
Another feature which may be applied to any selection scheme is population overlapping. 
The fraction of the old population which is replaced with the fresh members is called a 
generation gap (De Jong, 1975). Nothing particularly advantageous is found in overlapping 
schemes, although they may be useful for some problems, in particular for steady and 
noiseless environments (Goldberg & Deb, 1991). 
It should be also noted that some reproduction schemes allow multiple selection of one 
member, while others do not. The former case (also referred to as replacement) means that 
the selected member is returned back to the mating pool and thus may be selected again in 
the same generation. This feature is often used in stochastic selection methods such as 
fitness proportional selection and tournament selection. 
2.2.3.1 Deterministic selection 
All members are straightforwardly sorted according to their fitness value and some of the 
best members are picked up for reproduction. A certain number of members (or population 
percentage) is usually chosen, or the members may be selected one by one and reproduced 
until the next generation population is filled up. 
As noted before, deterministic methods are more suitable for the algorithms with small 
populations (less than about 20–40 members). They are therefore used in the areas where 
small populations are desirable (e.g. when fitness evaluation is extremely costly) or where it 
is traditionally adopted (in particular in Evolutionary Strategies, see Section 2.4). 
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2.2.3.2 Fitness proportional selection and fitness scaling 

In fitness proportional selection, all individuals receive the chances to reproduce that are 
proportional to their objective value (fitness). There are several implementations of this 
general scheme which vary in stochastic properties and time complexity: roulette wheel 
(Monte Carlo) selection, stochastic remainder selection and stochastic universal selection. 
The roulette wheel method is described here in more detail. 
The analogy with a roulette wheel arises because one can imagine the whole population 
forming a roulette wheel with the size of any individual’s slot proportional to its fitness. The 
wheel is then spun and the ‘ball’ thrown in. The probability of the ‘ball’ coming to rest in 
any particular slot is proportional to the arc of the slot and thus to the fitness of the 
corresponding individual (Coley, 1999). 

 
Fig. 1. Roulette wheel selection 

There are no means to control the selection pressure and the convergence speed: they are 
determined entirely by the fitness of each individual. 
However, such a control is often necessary. If for example, a fit individual is produced, 
fitness proportional selection with replacement can allow a large number of copies of this 
individual to flood the subsequent generations.  
One of the methods intended to overcome this problem and to maintain a steady selection 
pressure is linear fitness scaling (Coley, 1999). Linear fitness scaling works by pivoting the 
fitness of each individual about the average population fitness. The scale is chosen so that an 
approximately constant proportion of copies of the best members is selected compared to 
the ‘average member’.  
There are some more sophisticated scaling techniques, such as sigma scaling (Coley, 1999), 
in which the (expected) number of trials each member receives is adjusted according to the 
standard deviation of the population fitness. 
2.2.3.3 Ranking selection 

This is a development of the fitness proportional selection, aimed to achieve greater 
adaptability and to reduce stochastic. The idea represents the combination of fitness 
proportional and deterministic selection. The population is sorted according to the fitness, 
and a rank is assigned to each individual. After assigning the rank, a proportionate selection 
is applied as described in the previous section, using rank values instead of fitness. 
Ranking has two main advantages before fitness proportional selection (even that with 
fitness scaling). First, the required selection pressure can be controlled more flexibly by 
applying a specific rank assignment function. Second, it softens stochastic errors of the 
search, which can be especially destructive for the fitness functions affected by noise. If a 
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particularly fit member is generated that stands well off the whole population. Even if the 
proportionate selection is constrained by fitness scaling, this best member will be greatly 
favoured, whilst the rest of the population will receive very low selection pressure because 
the differences between their fitness values are insignificant as compared to the ‘outlier’. In 
contrast, ranking will establish a predefined difference between the neighbouring members, 
ensuring an adequate selection pressure for the whole population. 
2.2.3.4 Tournament selection 

Tournament selection is a simple yet flexible stochastic selection scheme. Choose some 
number s of individuals randomly from a population and then select the best individual 
from this group. Repeat as many times as necessary to fill up the mating pool. This 
somewhat resembles the tournaments held between s competitors. As a result, the mating 
pool, being comprised of tournament winners, has a higher average fitness than the average 
population fitness. 
The selection pressure can be controlled simply by choosing appropriate tournament size s. 
Obviously, the winner from a larger tournament will, on average, have a higher fitness than 
the winner of a smaller tournament.  In addition, selection pressure can be further adjusted 
via randomisation of the tournament.  

2.2.4 Recombination 
Recombination allows solutions to exchange the information in a way similar to that used 
by a biological organism undergoing sexual reproduction. This effective mechanism allows 
to combine parts of the solution (building blocks) successfully found by parents. Combined 
with selection, this scheme produces, on average, fitter offspring. Of course, being a 
stochastic operation, recombination can produce ‘disadvantaged’ individuals as well; 
however, they will be quickly perished under selection. 
Recombination is usually applied probabilistically with a certain probability. For GAs, the 
typical value is between 0.6 and 0.8; however, the values up to 1.0 are common. 

2.2.4.1 Alphabet based chromosome recombination 

In essence, recombination is ‘blending’ the information of two (or more) genomes in some 
way. For typical GAs, an approach from natural genetics is borrowed. It is known as 
crossover. During crossover, chromosomes exchange equal parts of themselves. In its 
simplest form known as single-point crossover, two parents are taken from the mating pool. 
A random position on the chromosome (locus) is chosen. Then, the end pieces of the 
chromosomes, starting from the chosen locus, are swapped. 
Single-point crossover can be generalised to k-point crossover, when k different loci are 
chosen and then every second piece is swapped. However, according to De Jong’s studies 
(De Jong, 1975) and also (Spears & Anand, 1991), multi-point crossover degrades overall 
algorithm performance increasingly with an increased number of cross points.  
There is another way of swapping pieces of chromosomes, known as uniform crossover. 
This method does not select crossover points. Instead, it considers each bit position of the 
two parents one by one and swaps the corresponding bits with a probability of 50%. 
Although the uniform crossover is, in a sense, an extreme case of multi-point crossover and 
can be considered as the most disruptive its variant, both theoretical and practical results 
(Spears & Anand, 1991) show that uniform crossover outperforms k-point crossover in most 
cases. 
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2.2.4.2 Real value recombination 

Real-coded EAs require a special recombination operator. Unlike bit strings, real parameters 
are not deemed as strings that can be cut into pieces. Instead, they are processed as a whole 
in a common mathematical way. Due to rather historical reasons, real-coded EAs were 
mostly developing under the influence of Evolutionary Strategies and Evolutionary 
Programming (see Section 2.4). As a result, real-value recombination has not been properly 
considered until the fairly recent past (’90s). Nevertheless, a number of various 
recombination techniques have been developed. Detailed analysis of them is available in 
(Beyer & Deb, 2001, Deb et al., 2001 and  Herrera et al., 1998). 
The simplest real-value recombination one can think of is the averaging of several parents, 
which is known as arithmetic crossover. This method produces one offspring from two or 
more parents. Averaging may be weighted according to parents’ fitness or using random 
weighting coefficients. 
Self-adaptive recombination create offspring statistically located in proportion to the 
difference of the parents in the search space. These recombination operators generate one or 
two children according to a probability distribution over two or more parent solutions 
where if the difference between the parent solutions is small, the difference between the 
child and parent solutions should also be small. 
The most popular approach is to use a uniform probability distribution—the so called ‘blend 
crossover’, BLX. The BLX operator randomly picks a solution in the range 

 ( ) ( )1 2 1 2 2 1;x x x x x xα α⎡ − − + − ⎤⎣ ⎦  (1) 

for two parents x1 < x2.  is the parameter which controls the spread of the offspring interval 
beyond the range of the parents’ interval [x1; x2]. 
Other approaches suggest non-uniform probability distribution. The Simulated Binary 
Crossover (SBX) uses a bimodal probability distribution with its mode at the parent 
solutions. It produces two children from two parents. This technique has been developed by 
K. Deb and his students in 1995. As the name suggests, the SBX operator simulates the 
working principle of the single-point crossover operator on binary strings. 
A different approach is demonstrated by the Unimodal Normal Distribution Crossover 
(UNDX) (Ono & Kobayashi, 1997). It uses multiple (usually three) parents and create 
offspring solutions around the centre of mass of these parents. UNDX uses a normal 
probability distribution, thus assigning a small probability to solutions away from the centre 
of mass. Another mean-centric recombination operator is the Simplex Crossover (SPX). It 
differs from UNDX by assigning a uniform probability distribution for creating offspring in 
a restricted region marked by the parents.  
Although both mean-centric and parent-centric recombination methods were found to 
exhibit self-adaptive behaviour for real-coded GAs similar to that of ESs (see Section 2.4), in 
a number of reports parent-centric methods were found generally superior (Deb et al., 2001). 

2.2.5 Mutation 
Mutation is another genetic operator borrowed from nature. However, unlike 
recombination, which is aimed at producing better offspring, mutation is used to maintain 
genetic diversity in the population from one generation to the next in a explorative way. 
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Not unlike recombination, mutation works differently for alphabet-based chromosomes and 
real-coded algorithms. However, in both cases it is merely a blind variation of a given 
individual.  

2.2.5.1 Bit string mutation 

In nearly all ordinary GAs, mutation is implemented as variation of a random bit in the 
chromosome. Each bit in the chromosome is considered one by one and changed with 
certain probability Pm. Bit change can be applied either as flipping (inverting) of the bit or 
replacing it with a random value. In the latter case, the actual mutation rate will be twice as 
low, because, on average, half of the bits are replaced with the same value. 
In GAs, mutation is usually controlled through mutation probability Pm. As a rule, Gas put 
more stress on recombination rather than on mutation, therefore typical mutation rates are 
very low, of the order of 0.03 and less (per bit). Rates close to 0.001 are common.  
Nevertheless, mutation is very important because it prevents the loss of building blocks 
which cannot be recovered by recombination alone. 
Mutation probability can be supressed in a number of ways. However, this may easily have 
an adverse effect—mutation is known for the ability to ‘push’ the stagnated process at the 
later stages. 
Another technique to avoid stagnation is so called ‘hypermutation’. Hypermutation is a 
method in which mutation probability is significantly (10–100 times) increased for a small 
number of generations (usually one) during the run, or such a high rate is applied 
constantly to a certain part of the population (e.g. 20%). Both hypermutation and random 
immigrants techniques are especially effective for dynamic environments, where the fitness 
landscape can change significantly over time (Grefenstette, 1999). 
The above mutation control methods have a common drawback: they are not selective. 
Sometimes an individual approach may be desirable. In particular, stronger mutation might 
be applied to the weakest members, while less disruptive mutation to the best individuals. 
Alternatively, some more sophisticated methods can be developed. Such fine tuning is a 
more common feature of Evolutionary Strategies (see section 2.4) and real-coded GAs. 
Some more direct control methods utilise additional bits in the genotype which do not affect 
the phenotype directly. However, these bits control the mutation itself. In the simplest case, 
a single flag bit can control the applicability of mutation to the respective parameter when 
zero value disables mutation and unity enables it.  

2.2.5.2 Real value mutation 

Implementation of a real-value mutation is rather more straightforward than that of 
alphabet strings. Unlike the latter, it is not an operation directly inspired by nature; 
however, as the real-coded algorithms generally do not use tricky encoding schemes and 
have the same problem-space and genotype values of the parameters, real-value mutation 
can be considered as the operation working on a higher level, up to direct phenotype 
mutation for function optimization problems. 
Mutation to a real value is made simply by adding a random number to it. It is evident that 
the strength of real-value mutation can be controlled in a very convenient way, through the 
variance of the distribution (or the window size for the uniform distribution). Like with the 
common GAs that operate string-type chromosomes, mutation strength can be adapted 
using many different techniques, from simple predefined linear decrease to sophisticated 
adaptation strategies 
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2.2.6 Measuring performance 
Performance of an EA is the measure how effective the algorithm is in search of the optimal 
solution. As evolutionary search is a stochastic and dynamic process, it can hardly be 
positively measured by a single figure. A better indicator of the performance is a 
convergence graph, that is, the graph ‘fitness vs. computation steps’.  
This figure presents two typical convergence graphs of two independent runs of the same 
GA with different sets of parameters. It can be seen that although the first run converges 
faster, it stagnates too early and does not deliver the optimal solution. Therefore, not the 
convergence speed nor time to reach a specified value, nor any other single parameter can 
be considered as a sole performance measure. 

 
Fig. 2. Typical convergence graphs 

De Jong in (De Jong, 1975) used two measures of the progress of the GA: the off-line 
performance and the on-line performance. The off-line performance is represented by the 
running average of the fitness of the best individual, fmax, in each population: 
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where g is the generation number. In contrast, the on-line performance is the average of all 
fitness values calculated so far: 
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The on-line performance includes both good and bad guesses and therefore reflects not only 
the progress towards the optimal solution, but also the resources taken for such progress. 
Another useful measure is the convergence velocity: 
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In the case of a non-stationary dynamic environment, the value of previously found 
solutions is irrelevant at the later steps. Hence, a better measure of optimisation in this case 
is the current-best metric instead of running averages.  
When comparing the performance of different algorithms, it is better to use the number of 
fitness evaluations instead of the number of generations as the argument for performance 
characteristics. 

2.2.7 The problem of convergence and genetic drift 
Usually, the progress of EAs is fast at first and then loses its speed and finally stagnates. 
This is a common scenario for optimisation techniques. However, progressing too quickly 
due to greedy exploitation of good solutions may result in convergence to a local optimum 
an thus in low robustness. Several methods that help to control the convergence have been 
described in the above sections, including selection pressure control and adaptation of 
recombination and mutation rates. 
However, it is unclear to which degree and how in particular to manage the algorithm’s 
parameters. What is ‘too fast’ convergence? Unfortunately, the current state of EA theory is 
inadequate to answer this question before the EA is initiated. 
For the most of the real-world problems, it takes several trial runs to obtain an adequate set 
of parameters. The picture of convergence process, as noted before, is not a good indicator 
of the algorithm’s characteristics. In contrast, the plot of genetic diversity of the population 
against generation number (or fitness function evaluations) gives a picture which can 
explain some performance problems. If the population quickly loses the genetic diversity, 
this usually means a too high initial selection pressure. The further saturation may be 
attributed to reduction of selection pressure at the later stages. The loss of genetic diversity 
is known as genetic drift (Coley, 1998). 

2.2.8 Schema theory 
Schema theory has been developed by John Holland (Holland, 1975) and popularised by 
David Goldberg (Goldberg, 1989) to explain the power of binary-coded genetic algorithms. 
More recently, it has been extended to real-value genome representations (Eshelman & 
Schaffer, 1993) and tree-like S-expression representations used in genetic programming 
(Langdon & Poli, 2002, O’Reilly & Oppacher, 1995). Due to the importance of the theory for 
understanding GA internals, it is mentioned here, though it is not within the scope of this 
work to discuss it in details. 

2.3 Genetic algorithms 
Genetic algorithms are one of the first evolutionary methods successfully used to solve 
practical problems, and until now they remain one of the most widely used EAs in the 
engineering field. John Holland in (Holland, 1975) provided a general framework for GAs 
and a basic theoretical background, much of which has been discussed in the former 
sections. There are more recent publications on the basics of GA, for example (Goldberg, 1989). 
The basic algorithm is exactly as in the Section 2.1; however, several variations to this 
scheme are known. For example, Koza (Koza, 1992) uses separate threads for asexual 
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reproduction, crossover and mutation, chosen at random; therefore, only one of these 
genetic operators is applied to an individual in each loop, while classical GA applies 
mutation after crossover independently. 
One of the particularities of typical GAs is genome representation. The vast majority of GAs 
use alphabet-based string-like chromosomes described in Section 2.2.2, although real coded 
GAs are gaining wider popularity. Therefore, a suitable mapping from actual problem space 
parameters to such strings must be designed before a genetic search can be conducted. 
 The objective function can also have the deceptive properties as in most practical cases little 
is known about the fitness landscape. Nevertheless, if the fitness function is to be designed 
for a specific engineering task (for example, an estimate of the flight control quality, as will 
be used in this study later), attention should be paid to avoiding rugged and other GA-
difficult fitness landscapes. 
Of the two genetic operators, recombination (crossover) plays the most important role in 
Gas. Typical probability of crossover is 0.6 to 0.8 and even up to 1.0 in some applications. On 
the contrary, mutation is considered as an auxiliary operator, only to ensure that the 
variability of the population is preserved. Mutation probabilities range from about 0.001 to 
0.03 per bit. 
Population size is highly problem dependent; however, typical GAs deal with fairly large or 
at least moderate population sizes, of the order of 50 to 300 members, although smaller and 
much larger sizes (up to several thousands) could be used. 
Although by far the largest application of GAs is optimisations of different sorts, from 
simple function optimisations to multi-parameter aerodynamic shape optimisation 
(McFarland & Duisenberg, 1995) and optimal control (Chipperfield & Flemming, 1996), GAs 
are suitable for many more tasks where great adaptation ability is required, for example, 
neural networks learning (Sendhoff & Kreuz, 1999) and time series prediction (Mahfoud & 
Mani, 1996). The potential of GA application is limited virtually only by the ability to 
develop a suitable encoding. 

2.4 Evolutionary strategies and evolutionary programming 
Evolutionary Programming was one of the very first evolutionary methods. It was 
introduced by Lawrence J. Fogel in the early 1960s (Fofel, 1962), and the publication (Fogel 
et al., 1966) by Fogel, Owens and Walsh became a landmark for EP applications. Originally, 
EP was offered as an attempt to create artificial intelligence. It was accepted that prediction 
is a keystone to intelligent behaviour, and in (Fogel et al., 1966) EP was used to evolve finite 
state automata that predict symbol strings generated from Markov processes and non-
stationary time series. 
In contrast, Evolutionary Strategies appeared on the scene in an attempt to solve a practical 
engineering task. In 1963, Ingo Rechenberg and Hans-Paul Schwefel were conducting a 
series of wind tunnel experiments in Technical University of Berlin trying to optimise 
aerodynamic shape of a body. This was a laborious intuitive task and the students tried to 
work strategically. However, simple gradient and coordinate strategies have proven to be 
unsuccessful, and Rechenberg suggested to try random changes in the parameters defining 
the shape, following the example of natural mutations and selection. 
As it can be seen, both methods are focusing on behavioural linkage between parents and 
the offspring rather than seeking to emulate specific genetic operators as observed in nature. 
In addition, unlike GAs, natural real-value representation is predominantly used. In the 
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present state, EP and ES are very similar, despite their independent development over 30 
years, and the historical associations to finite state machines or engineering field are no 
longer valid. In this study, ES approach is employed, so further in this section Evolutionary 
Strategies are described, with special notes when the EP practice is different. 

2.4.1 Self-adaptation 
One of the most important mechanisms that differs ES from the common GAs is 
endogenous control on genetic operators (primarily mutation). Mutation is usually 
performed on real-value parameters by adding zero mean normally distributed random 
values. The variance  of these values is called step size in ES. 
The adaptation of step size rules can be divided into two groups: pre-programmed rules and 
adaptive, or evolved, rules. The pre-programmed rules express a heuristic discovered 
through extensive experimentation. One of the earliest examples of pre-programmed 
adaptation is Rechenberg’s (1973) 1/5 rule. The rule states that the ratio of successful 
mutations to all mutations should be 1/5 measured over a number of generations. The 
mutation variance (step size) should increase if the ratio is above 1/5, decrease if it is below 
and remain constant otherwise. The variance is updated every k generations according to: 
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where ns is the ratio of successful mutations and 0.817 c < 1 is the adaptation rate. The lower 
bound c = 0.817 has been theoretically derived by Schwefel for the sphere problem (Ursem, 
2003). The upper index in parenthesis henceforth denotes the generation number. 
The other approach is the self-adaptive (evolved) control where Schwefel (Schwefel, 1981) 
proposed to incorporate the parameters that control mutation into the genome. This way, an 
individual a = (x, σ ) consists of object variables (sometimes referred as describing parameters) 
x and strategy parameters σ . The strategy parameters undergo basically the same evolution 
as object variables: they are mutated and then selected together, though only on the basis of 
objective performance, on which strategy parameters have indirect influence. The 
underlying hypothesis in this scheme is that good solutions carry good strategy parameters; 
hence, evolution discovers good parameters while solving the problem. 

2.5 Genetic programming 
Genetic programming (GP) is an evolutionary machine learning technique. It uses the same 
paradigm as genetic algorithms and is, in fact, a generalisation of GA approach. GP 
increases the complexity of the structures undergoing evolution. In GP, these structures 
represent hierarchical computer programs of varying size and shape. 
GP is a fairly recent EA method compared to other techniques discussed before in this 
chapter. The first experiments with GP were reported by Stephen Smith (Smith, 1980) and 
Nichael Cramer (Gramer, 1985). However, the first seminal book to introduce GP as a solid 
and practical technique is John Koza’s ‘Genetic Programming’, dated 1992. 
In GP, each individual in a population is a program which is executed in order to obtain its 
fitness. Thus, the situation is somewhat opposite to GAs: the individual is a ‘black box’ with 
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an arbitrary input and some output. The fitness value (often referred to as fitness measure in 
GP) is usually obtained through comparison of the program’s output with the desired 
output for several input test values (fitness cases). However, fitness evaluation in GP is 
problem dependent and may be carried out in a number of ways. For example, the fitness of 
a program controlling a robotic animal may be calculated as the number of food pieces 
collected by the animal minus resources taken for search (e.g. path length). When seeking a 
function to fit the experimental data, the deviation will be the measure of fitness. 
One of the characteristics of GP is enormous size of the search space. GP search in the space 
of possible computer programs, each of which is composed of varying number of functions 
and terminals. It can be seen that the search space is virtually incomprehensible, so that even 
generation of the initial random population may represent some difficulties. Due to that, GP 
typically works with very large populations of hundreds and even thousands of members. 
Two-parent crossover is usually employed as the main genetic operator, while mutation has 
only a marginal role or is not used at all. 

2.5.1 Genome representation in GP and S-expressions 
Unlike linear chromosomes in GAs, genomes in GP represent hierarchical, tree-like 
structures. Any computer program or mathematical expression can be depicted as a tree 
structure with functions as nodes and terminals as leaves. For example, let us consider an 
expression for one of the roots of a square equation ax2 + bx + c = 0: 
 

           
Fig. 3. Tree-like representation of an expression 

The convenience of such tree-like structures  is that they can be easily modified on the sub-
tree level. Any sub-tree can be taken out and replaced with another one, preserving syntax 
validity of the expression.   
However, the trees such as shown in Fig. 3 should be encoded in some computer-readable 
form for actual GP implementation. This can be done in a number of ways. Some systems 
(e.g. MATLAB) provide built-in mechanisms for storage and operation on hierarchical 
structures. If this is not available, string representations are employed. An expression or a 
program can be encoded in a common for imperative languages way; for example, the 
formula for the root of a square equation from Fig. 3 can be written as 

 ( )( ) ( )4 / 2sqrt b b a c b a∗ − ∗ ∗ − ∗  (6) 

Unfortunately, such representation, although being mathematically readable, is 
inconvenient to handle in a GP way. It has to be parsed to the tree-like form for every 
operation. Therefore, another syntax is traditionally used. 
One can note that in the trees such as the ones above, an operation always precedes its 
arguments on the branch, e.g. instead of ‘a + b’ it reads ‘+ a b’. This notation is known as 
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prefix notation or Polish notation. It is used in the programming language LISP and its 
derivatives— certainly not the most human-friendly language but very flexible and useful in 
many areas, and is one of the most popular languages in GP field. 
There are extensions to the tree-based GP. Most of them employ decomposition of the 
programs into sub-trees (modules) and evolving these modules separately. One of the most 
widely used methods of this kind is Koza’s Automatically Defined Functions (ADF) (Koza, 
1994). In ADF approach, the program is split into a main tree and one or more separate trees 
which take arguments and can be called by the main program or each other. In another 
approach, code fragments from successful program trees are automatically extracted and are 
held in a library, and then can be reused in the following generations by any individual via 
library calls. 
However, tree-based GP is not the only option. It is possible to express a program as a linear 
sequence of commands. One of the examples of linear GP systems is stack-based GP 
(Perkins, 1994). In stack-based languages (such as Forth) each program instruction takes its 
arguments from a stack, performs its calculations and then pushes the result back onto the 
stack. For example, the sequence 1 2 + . pushes the constants 1 and 2 onto the stack, then ‘+’ 
takes these values from the stack, performs the addition and pushes the result 3 back. The 
final dot extracts and prints out the result. The notation such as ‘1 2 +’ is the opposite to that 
used in LISP and is called reverse Polish notation (or postfix notation).  
2.5.1.1 Function set and terminal set 
When designing a GP implementation, proper care should be taken for choosing the 
function and terminal sets. The function set F = {f1, f2,…,fnf} is the set of functions from which 
all the programs are built. Likewise, the terminal set T = {a1, a2,…,ant} consists of the 
variables available for functions. In principle, the terminals can be considered as functions 
with zero arguments and both the sets can be combined in one set of primitives C = F U T. 
The choice of an appropriate set of functions and variables is crucial for successful solution 
of a particular problem. Of course, this task is highly problem dependent and requires 
significant insight. In some cases, it is known in advance that a certain set is sufficient to 
express the solution to the problem at hand. 
However, in most practical real-world problems the sufficient set of functions and terminals 
is unknown. In these cases, usually all or most of the available data is supplied to the 
algorithm or iterative design is employed when additional data and functions are added if 
the current solution is unsatisfactory. As a result, the set of primitives is often far from the 
minimal sufficient set. 
The effect of adding extraneous functions is complex. On the one hand, an excessive number 
of primitives may degrade performance of the algorithm, similar to choosing excessive 
genome length in GA. On the other hand, a particular additional function or variable may 
dramatically improve performance of both the algorithm and solution for a particular 
problem. For example, addition of the integral of error ( )setH H dt−∫  as an input to altitude 
hold autopilot allows to eliminate static error and improve overall performance. 
Alternatively, the integrator function may be introduced along with both the current 
altitude reading H and the desired altitude Hset.  

2.5.2 Initial population 
Generation of the initial population in GP is not as straightforward as it usually is in 
conventional GAs. It has been noted above that the shape of a tree has (statistically) an 



 New Achievements in Evolutionary Computation 

 

212 

influence on its evolution and that both sparse and bushy trees should be presented in the 
initial population. To this end, a so called ‘ramped half-and-half’ method, suggested by 
Koza (Koza, 1992), is typically used in GP. In this method, half of the trees in the population 
are generated as full trees and another half as random trees. 
The ‘ramped half-and-half’ method employs two techniques for random tree generation: the 
‘full’ method and the ‘grow’ method. Both of them start from choosing one of the functions 
from the function set F at random. It becomes the root of the new tree. Then, for each of the 
inputs of this function, a new primitive is selected with uniform probability. If the path from 
the root to the current point is shorter than the specified maximum depth, the new primitive 
is selected from the function set F for the ‘full’ method and from the union set C for the 
‘grow’ method. If the path length reaches the specified depth, a terminal from the set T is 
selected at random for both methods. The process continues until the tree is complete, i.e. all 
the inputs are connected. 

2.5.3 Genetic operators 
2.5.3.1 Crossover 

Crossover is usually the most important genetic operator in GP. Its classic variation (Koza, 
1992) produces two children trees from two parent trees by exchanging randomly selected 
sub-trees of each parent. Both parents are selected using one of the stochastic selection 
methods such as fitness proportional selection and tournament selection. The crossover 
operation begins by choosing, using a uniform probability distribution, one random point in 
each parent independently to be the crossover point for that parent. The point may be a 
node as well as a leaf. Then, the sub-trees that have roots at the crossover points are 
removed from the parents, and the sub-tree from the second parent is inserted in place of 
the removed sub-tree of the first parent. 
In terms of S-expressions, the sub-tree crossover is equivalent to exchanging the sublists of 
the parental lists. Considering the example from Fig. 3, the parental solutions are 

 ( ) ( )( )( )2x x x y− ∗ ∗ ∗  and ( )( )( )/ 2x x y+ ∗  (7) 

The sub-lists corresponding to the selected crossover fragments are emphasized. These 
sublists are swapped between the parents and the following offspring are produced: 
 

 
Fig. 4. Sub-tree crossover: x2 − 2xy crossed with (x2 + y)/2 to produce x2 −2(x2 + y) and xy/2 
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 ( ) ( )( )( )( )2x x x x y− ∗ ∗ + ∗  and ( )( )/ 2x y∗  (8) 

It can be noted that in such a simple operation, syntactic validity of the resulting expressions 
is always preserved. 
To avoid excessive growth of the branches of the program trees, a maximum depth value is 
usually established. If the crossover operation produces an offspring of impermissible 
depth, this offspring is disregarded and its parent is reproduced as is. Koza (Koza, 1992) 
uses the default maximum depth of 17. Even such a modest value allows creation of the 
trees of enormous size, up to 217 - 1 = 131071 (for binary trees). 
2.5.3.2 Other genetic operators 

Reproduction as such is simply copying of the selected individual into the next generation 
population. In classical GP (Koza, 1992), about 10% of the population is selected for simple 
reproduction and 90% is reproduced through crossover. 
Mutation is typically a replacement of a randomly selected sub-tree of an individual with a 
new randomly generated sub-tree. A special case is point mutation, when a single random 
terminal is inserted in place of a sub-tree. In fact, point mutations sometimes happen during 
crossover operation. In general, mutation is less needed for GP than for GAs, because 
crossover alone can reintroduce genetic diversity. In many practical applications, mutation 
is not used at all. 
Permutation is changing of the order of arguments of a randomly selected function. The 
effect and usefulness of permutation is roughly the same as that of mutation. 
Editing is changing the shape and structure of a tree while maintaining its semantic 
meaning. Usually this implies a mathematical simplification of the expression. For example, 
the sub-trees which can be immediately evaluated may be replaced with a corresponding 
terminal, e.g. the expression (+ 2 3) may be replaced with (5).  
Simplification of the solutions may reduce (sometimes significantly) their length and thus 
reduce the computation time needed for their evaluation. In addition, shorter expressions 
are less vulnerable to disruption caused by crossover and mutation as there are fewer 
chances that they will be torn apart. 

2.5.4 Convergence in GP 
The question of convergence in GP is more complicated than in GAs. Generally, it is 
assumed in EA theory that the population converges when it contains substantially similar 
individuals (Langdon & Poli, 1992). Unlike conventional GAs, which have one-to-one 
mapping between genotype and phenotype, this rarely happens in GP. The search space in 
GP is essentially bigger than the phenotypic search space of the problem at hand. Any 
solution to the problem may be represented in an infinite number of ways. 
Therefore, the population in GP may contain significantly different individuals (in terms of 
size and shape) and continue to evolve while yielding practically similar solutions to the 
problem. 
However, the genotype cluster does not stabilise and continues to evolve. Since then, most 
of the highly fit individuals are produced by adding relatively insignificant branches to the 
successful core that came from the common ancestor. Therefore, each descendant genotype 
tends to be bigger than its parents. This results in a progressive increase in size known as 
bloat. 
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2.5.5 Bloat 
The rapid growth of programs produced by GP is known since the beginning (Koza, 1992). 
As already noted, this growth need not to be correlated with increase of fitness because it 
consists of the code that does not change the semantics of the evolving programs. The rate of 
growth varies depending upon the particular GP paradigm being used, but usually 
exponential rates are observed (Nordin & Banzhaf, 1995). 
For greater detail of different theories of bloat the reader is referred to (Langton, 1999) or 
(Langton & Poli, 2002). Generally, it should be noted that GP crossover by itself does not 
change the average program size. Bloat arises from the interaction of genetic operators and 
selection, i.e. selection pressure is required. 
The most commonly (if not always) used restrictive technique is size and depth limits. Its 
implementation is already described in Section 2.5.3.1. It should be noted that the actual 
experiments (Langton & Poli, 2002) indicate that the populations are quickly affected by 
even apparently generous limits. Another commonly used approach is to give some 
preference to smaller solutions. The ‘penalty’ for excessive length may be included in fitness 
evaluation. However, in order not to degrade the performance of the algorithm, this 
component should be small enough so that it would have effect only for the solutions with 
identical phenotypic performance. 

3. Aircraft flight control 
Not unlike the generic control approach, aircraft flight control is built around a feedback 
concept. Its basic scheme is shown in Fig. 5. The controller is fed by the difference between 
the commanded reference signal r and the system output y. It generates the system control 
inputs u according to one or another algorithm.  
 

 
Fig. 5. Feedback system (one degree of freedom) 
One of the main tasks of flight control as an engineering discipline is design of the 
controllers which enable a given aircraft to complete a defined mission in the most optimal 
manner, where optimality is based on mission objective.  

3.1 Intelligent control 
Intelligent control is a general and somewhat bold term that describes a diverse collection of 
relatively novel and non-traditional control techniques based on the soft computing 
approach. These include neural networks, fuzzy logic, adaptive control, genetic algorithms 
and several others. Often they are combined with each other as well as with more traditional 
methods. 
Evolutionary and genetic algorithms (EAs, GAs) are global optimisation techniques applicable 
to a broad area of engineering problems. They can be used to optimise the parameters of 
various control systems, from simple PID controllers (Zein-Sabatto & Zheng, 1997) to fuzzy 
logic and neural network driven controllers (Bourmistrova, 2001; Kaise & Fujimoto, 1999). 
Another common design approach is evolutionary optimisation of trajectories, accompanied 
by a suitable tracking controller (e.g. (Wang & Zalzala, 1996)). An elaborated study of 
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applications of EAs to control and system identification problems can be found in (Uzrem, 
2003). As discussed above, Genetic Algorithms (in the form of Genetic Programming) are able 
to evolve not only the parameters, but also the structure of the controller. 
In general, EAs require substantial computational power and thus are more suitable for 
offline optimisation. However, online evolutionary-based controllers have also been 
successfully designed and used. The model predictive control is typically employed for this 
purpose, where the controller constantly evolves (or refines) control laws using an 
integrated simulation model of the controlled system. A comprehensive description of this 
approach is given in (Onnen et al., 1997). 

3.2 Flight control for the UAV recovery task 
Aircraft control at recovery stage of flight can be conventionally separated into two closely 
related, but distinctive tasks: guidance and flight control. Guidance is the high-level (‘outer 
loop’) control intended to accomplish a defined mission. This may be path following, target 
tracking or various navigation tasks. Flight control is aimed at providing the most suitable 
conditions for guidance by maintaining a range of flight parameters at their optimal levels 
and delivering the best possible handling characteristics.  
The landing of an aircraft is a well established procedure which involves following a 
predefined flight path. More often than not, this is a rectilinear trajectory on which the 
aircraft can be stabilised, and the control interventions are needed only to compensate 
disturbances and other sources of errors. 
The position errors with respect to the ideal glidepath can be measured relatively easily. 
Shipboard landing on air carriers has tight error tolerances and absence of flare manoeuvres 
before touchdown. The periodic ship motion does have an effect on touchdown; however, it 
does not affect significantly the glidepath, which is projected assuming the average deck 
position.  
Ship oscillations in high sea cause periodic displacement of the recovery window makes it 
impossible to project an optimal flight path when the final approach starts. Therefore, it 
turns out that the UAV recovery problem resembles that of homing guidance rather than 
typical landing. While stabilisation on a known steady flight path can be done relatively 
easy with a PID controller, homing guidance to a moving target often requires a more 
sophisticated control.  

3.3 UAV controller structure 
The objective is to synthesise such guidance strategy that enables reliable UAV recovery, 
and to produce a controller that implements the target tracking guidance strategy. 
The evolutionary design (ED) method applied for this task allows to evolve automatically 
both the structure and the parameters of the control laws, thus potentially enabling to 
generate a ‘full’ controller, which links available measurements directly with the aircraft 
control inputs (throttle, ailerons, rudder and elevator) and implements both the guidance 
strategy and flight control (Fig. 6): 
 

 
Fig. 6. Full controller with embedded guidance strategy 
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However, this approach, even though appealing at first and requiring minimum initial 
knowledge, proves to be impractical as the computational demands of the evolutionary 
algorithms (EAs) soar exponentially with the dimensionality of the problem. It is therefore 
desirable to reduce complexity of the problem by reducing the number of inputs/outputs 
and limiting, if appropriate, possible structures of the controllers.  
Also it is highly desirable to decompose the complex control task into several simpler 
problems and to solve them separately. A natural way of such decomposition is separating 
the trajectory control (guidance) and flight control. The guidance controller issues 
commands ug to the flight controller, which executes these commands by manipulating the 
control surfaces of the UAV (Fig. 7). These two controllers can be synthesised separately 
using appropriate fitness evaluation for each case.  
 

 
Fig. 7. UAV recovery control diagram 
The internal structure of the controller is defined by the automatic evolutionary design 
based on predefined set of inputs and outputs. As an additional requirement is that the 
outputs ug should represent a group of measurable flight parameters such as body 
accelerations, velocities and Euler angles, which the flight controller can easily track. 
The structure of the output part of the guidance controller is as shown in Fig. 8 which allows 
to evolve the horizontal and vertical guidance laws separately, which may be desirable due 
to different dynamics of the UAV’s longitudinal and lateral motion and also due to 
computational limitations. 
Input measurements to the guidance controller should be those relevant to trajectory like 
positioning information, pitch and yaw angles and airspeed.  
 

 
Fig. 8. Guidance controller 
The derived quantities from raw measurements are the vertical and lateral velocity 
components with respect to the approach ground reference frame.  
The system is based on radio distance metering and provides ten independent raw 
measurements (Fig. 9): three distances d1, d2 and d3 from the UAV to the radio transmitters 
located at both ends of the recovery boom which supports the arresting wire and at the base 
of recovery mast; three rates of change of these distances; distance differences (d1 – d2) and 
(d3 – d2); and rates of change of the differences. 
The guidance laws evolution process is potentially capable to produce the laws directly 
from raw measurements, automatically finding necessary relationships between the 
provided data and the required output. 
Flight controller receives two inputs from the guidance controller: bank angle demand γd 
and normal body load factor demand d

yn . It should track these inputs as precisely as 
possible by manipulating four aircraft controls: throttle, ailerons, rudder and elevator. 
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Fig. 9. Positioning scheme 

The available measurements from the onboard sensors are body angular rates ωx, ωy, ωz 
from rate gyros, Euler angles γ, ψ, θ, body accelerations nx, ny, nz from the respective 
accelerometers, airspeed Va, aerial angles α and β, actual deflection of the control surfaces δa, 
δr, δe, and engine rotation speed Nrpm.  
For simplicity of design, the controller is subdivided into independent longitudinal and 
lateral components. In longitudinal branch, elevator tracks the input signal d

yn , while 
throttle is responsible for maintaining a required airspeed. In lateral control, naturally, 
ailerons track  γd, while rudder minimises sideforce by keeping nz near zero. 

4. Evolutionary Design 
The Evolutionary Design (ED) presented in this section, generally, takes no assumptions 
regarding the system and thus can be used for wide variety of problems, including 
nonlinear systems with unknown structure.  The core of evolutionary design is a specially 
tailored evolutionary algorithm (EA) which evolves both the structure and parameters of 
the control laws. 
Parallel evolution can be implemented in a variety of ways. One of the few successfully 
employed variants is the block structure controller evolution (Koza et al., 2000). 
In this work the ED algorithm enables to evolve suitable control laws within a reasonable 
time by utilising gradual evolution with the principle of strong casualty. This means that 
structure alterations are performed so that the information gained so far in the structure of 
the control law is preserved. Addition of a new block, though being random, does not cause 
disruption to the structure. Instead, it adds a new dimension and new potential which may 
evolve later during numerical optimisation.  
The addition of new points or blocks is carried out as a separate dedicated operation (unlike 
sporadic structure alterations in the sub-tree crossover), and is termed structure mutation. 
Furthermore, in this work structure mutation is performed in a way known as neutral 
structure mutation. That’s when the new block should be placed initially with zero 
coefficient. The usefulness of neutral mutations has been demonstrated for the evolution of 
digital circuits (Van Laarhoven & Aarts, 1987) and aerodynamic shapes (Olhofer et al., 2001).  
As a result, the ED algorithm basically represents a numerical EA with the inclusion of 
structure mutations mechanism. 
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Control laws are represented as a combination of static functions and input signals, which 
are organised as a dynamic structure of state equations and output equations in form of 
continuous representation. 
The controller being evolved has m inputs, r outputs and n states. So, the controller 
comprises of n state equations and r output equations: 
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where u is size m vector of input signals, x = [x1,x2,…xn] is size n vector of state variables, 
y1…r are controller outputs. Initial value of all state variables is zero. All n+r equations are 
built on the same principle and are evolved simultaneously. For structure mutations, a 
random equation is selected from this pool and mutated. 
Input signals delivered to each particular controller are directly measured signals as well as 
the quantities derived from them. Within each group, inputs are organised in the subgroups 
of ‘compatible’ parameters. Compatible parameters are those which have close relationship 
with each other, have the same dimensions and similarly scaled. The examples of 
compatible parameters are the pairs (nx, nxg), (ωy, ψ� ), (Va, VCL).  
Therefore, every controller input may be represented by a unique code consisting of three 
indices: the number of group a, the number of subgroup b and the number of item in the 
subgroup c. The code is designated as u(a,b,c). 
Each of the control equations (9) is encoded as described above. To this end, only one single 
output equation of the form y = f(u) will be considered in this section.  
The encoding should allow a simple way to insert a new parameter in any place of the 
equation without disrupting its validity and in a way that this insertion initially does not 
affect the result, thus allowing neutral structure mutations. Conceptually, the equation is a 
sum of input signals, in which: 
• every input is multiplied by a numeric coefficient or another similarly constructed 

expression; 
• the product of the input and its coefficient (whether numeric or expression) is raised to 

the power assigned to the input; 
• a free (absolute) term is present. 
The simplest possible expression is a constant: 

 y = k0  (10) 

A linear combination of inputs plus a free term is also a valid expression: 

 y = k2u2 + k1u1 + k0  (11) 

Any numeric constant can be replaced with another expression. An example of a full 
featured equation is 

 y = ((k4u4 + k3)u3)–0.5 + k2u2 + (k1u1)2 + k0  (12) 

This algorithm can be illustrated by encoding the example (12). The respective internal 
representation of this expression is: 
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• Equation: y = ((k4u4 + k3)u3)–0.5 + k2u2 + (k1u1)2 + k0 
• Expression: { u(3,-0.5) u(4) 1 2 u(2) 3 u(1,2) 4 5 } 
• Object parameters: [ k4 k3 k2 k1 k0 ] 
• Strategy parameters: [ s4 s3 s2 s1 s0 ] 
This syntax somewhat resembles Polish notation with implicit ‘+’ and ‘*’ operators before 
each variable. The representation ensures presence of a free term in any sub-expression, 
such as k3 and k0 in the example above. 
The algorithm of structure mutation is presented below.  
1. Select an input (or a state variable) at random: u(a,b,c). 
2. Obtain the initial values of the numeric coefficient and the strategy parameter  
3. Append the object parameters vector with the initial coefficient, and the strategy 

parameters vector with the initial step size.  
4. Form a sub-expression consisting of the selected variable code and the obtained index: { 

u(a,b,c) n }. 
5. With 40% probability, set the insertion point (locus) to 1; otherwise, select a numeric 

value in the expression at random with equal probability among all numeric values 
present and set the locus to the index of this value. 

6. Insert the sub-expression into the original expression at the chosen locus (before the item 
pointed). 

This procedure may produce redundant expressions when the selected variable already 
exists at the same level. Thus an algebraic simplification procedure is implemented.  
Fitness evaluation of a controller can be divided into two main stages. First is the 
preparation of the sample task and simulation of the model with the controller in the loop. 
The second stage is analysis of the results obtained from the simulation and evaluation of 
the fitness as such.  
Other parameters of flight taken into account is control usage (or control effort): it is 
desirable to keep control usage at minimum.  
The total fitness value is calculated as the weighted sum of all estimates: 

 F =WcCc +WfCf +WeCe +…  (13) 

The exact value of the weighting coefficients W, as well as the number of estimates taken 
into account, is individual for each controller. As a rule, the weighting coefficients are 
chosen empirically.  
Several steps of design algorithm need further clarification. 
Initial population is initialised with the control laws of the form y = const with randomly 
chosen constants.  
The selection is performed deterministically. The populations used in this study were of 
moderate size, usually 24 to 49 members. Selection pressure is determined by the number of 
the offspring n of each individual. The smaller n, the lower the selection pressure. For nearly 
all runs in this work n = 2, which means that half of the population is selected. This is a 
rather mild level of selection pressure. 
The parameters determining structure mutation occurrence, ks and Ps, both change during the 
evolution. The probability of structure mutation Ps is normally high in the beginning (0.7 to 
1.0) and then decrease exponentially to moderate levels (0.4 to 0.6) with the exponent 0.97 to 
the generation number. In the beginning of evolution, ks is reduced by half until the 
generation 20 and 100 respectively. 



 New Achievements in Evolutionary Computation 

 

220 

Reproduction is performed simultaneously with mutation, as it is typically done in ES, with 
the exception that this operation is performed separately for each selected member. 

5. Controller synthesis and testing 
The UAV control system is synthesised in several steps. First, the flight controller is 
produced. This requires several stages, since the flight controller is designed separately for 
longitudinal and lateral channels. When the flight controller is obtained, the guidance 
control laws are evolved. 
Application of the ED algorithm to control laws evolution is fairly straightforward: 1) 
preparation of the sample task for the controller, 2) execution of the simulation model for 
the given sample task and 3) analysis of the obtained performance and evaluation of the 
fitness value.  For a greater detail of control system design reader is referred to 
(Bourmistrova & Khantsis, 2009). When both the model and fitness evaluation are prepared, 
the final evolution may be started. Typically, the algorithm is run for 100–200 generations 
(depending on complexity of the controller being evolved). The convergence and the 
resulting design is then analysed and the evolution, if necessary, is continued. 
Step 1. PID autothrottle - Initially a simple PID variant of autothrottle is evolved - to ensure 

a more or less accurate airspeed hold. At the next stage, its evolution is continued in 
a full form together with the elevator control law. The PID structure of the 
controller may be ensured by appropriate initialisation of the initial population and 
by disabling structure mutations. Therefore, the algorithm works as a numerical 
optimisation procedure. The structure of the autothrottle control law is following: 
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where a
d

a VVV −=Δ is the airspeed error signal, tδ is the throttle position command 
and k1…6 are the coefficients to be optimised. 

Step 2. Longitudinal control - With a simple autothrottle available, elevator control can be 
developed to provide tracking of the normal body load factor demand d

yn . 
Altogether, the reference input signal is 

 ( ) ( )( ) ( ) ( )tcttHHtn dd
y 2.0cos03.0 ++−= θ  (15) 

Elevator control law is initialised as follows: 
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where y
d
yy nnn −=Δ  is the load factor error and the coefficients k1…3 are sampled at 

random for the initial population.  
Step 3. Lateral control - Lateral control consists of two channels: ailerons control and rudder 

control. As a rule, for an aerodynamically stable aircraft such as the Ariel UAV, 
lateral control is fairly simple and is not as vital for flight as longitudinal control. 
For this reason, both control laws, for ailerons and rudder, are evolved 
simultaneously in one step. 
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Both ailerons and rudder control laws are initialised in a similar manner to (16): 
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Step 4. Guidance - At this point, flight controller synthesis is completed and guidance laws 
can be evolved. Guidance controller comprises two control laws, for the vertical 
and horizontal load factor demands, d

ykn and d
zkn  respectively. This is equivalent to 

acceleration demands 

 d
yk

d
yk gna =  and d

zk
d
zk gna =  (18) 

These demands are passed through the kinematic converter to form the flight controller 
inputs d

yn and dγ . 

In the guidance task, the random factors include initial state of the UAV; Sea State, 
atmospheric parameters, and initial state of the ship. 
Fitness is calculated as follows: 

 ( ) ( ) ( )d
zkf

d
zkc

d
ykcg nCnCnCzhF 10050050025502040 11

2
1

2
1 +++++Δ+Δ= γψ  (19) 

where 1hΔ  and 1zΔ  are vertical and horizontal miss distances, and 1ψ  and 1γ  are final yaw 
and bank angles. Greater weight for vertical miss than that for horizontal miss is used 
because vertical miss allowance is smaller (approximately 3–4 m vs. 5 m) and also because 
vertical miss may result in a crash into the boom if the approach is too low. 
Algorithm initialisation is the same as for longitudinal flight control laws evolution, except 
that elitism is not used and the population size is 48 members. The initial population is 
sampled with the control laws of the form 
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where all coefficients k are chosen at random. For convenience, the control laws are 
expressed in terms of accelerations, which are then converted to load factors according to 
(18). Since these control laws effectively represent ‘empty’ laws y = const (plus a low-pass 
output filter with randomly chosen bandwidth), structure mutation is applied to each 
member of the initial population.  
From the final populations, the best solution is identified by calculating fitness of each 
member using N = 25 simulation runs, taking into account also success rate. As an eample 
the best performing controller is the following (unused state variables are removed) with 
100% success rate in the 25 test runs with average fitness 69.52: 
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The other attempted approach is the pure proportional navigation (PPN) law for recovery 
which was compared with the obtained solutions (Duflos et al., 1999; Siouris & Leros, 1988). 
The best PN controller have been selected using the fitness values of each member of the 
final population averaged over 100 simulation runs. It is the following: 
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This controller received the fitness 88.85 and showed success rate 95%. 
 

 
Fig. 12. Population average fitness (a) and best fitness (b) for two independent evolutions of 
guidance controller 

5.1 Controller testing 
In this work, two main types of simulation tests are conducted – robustness and 
performance. Results are presented for robustness test, which is aimed at ensuring the 
controller has good robustness to modelling uncertainties and to test whether the controller 
is sensitive to specific perturbations.  
Perturbations were introduced in two ways -  in form of variation of physical quantities and 
by introducing additional dynamic elements and by changing internal variables such as 
aerodynamic coefficients. For a realistic test, all perturbations should be applied 
simultaneously to identify the worst case scenario. However, single perturbation tests (the 
sensitivity analysis) allow to analyse the degree of influence of each parameter and help to 
plan the robustness test more systematically.  
In this type of test, a single model variable is perturbed by a set amount and the effect upon 
the performance of the controller is determined. Performance evaluation can be measured in 
a manner similar to fitness evaluation of the guidance controller (equation (19)). 
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The additional parameters taken into account in performance measurement are impact 
speed impV  and minimum altitude minH  attained during the approach. 
Altogether, the performance cost (PC) is calculated as follows: 
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Impact speed impV and minimum altitude minH are measured in m/s and metres 
respectively. Other designations are as in (19). Unlike fitness evaluation in the flight 
controller evolution, the commanded control deflections aδ , rδ  and eδ  are saturated as 
required for control actuators.  
The environment delivers a great deal of uncertainty. The range of disturbances and the 
initial ship phase are chosen to provide a moderately conservative estimation of controller 
performance. Results for different dynamic scenarios are presented in (Bourmistrova & 
Khantsis, 2009).  
The parameters corresponding to aircraft geometry and configuration are tested in a similar 
manner. The range is increased to the scale factors between 0 and 10 (0 to 1000%) with step 
0.05. The allowable perturbations (as factors to the original values) are summarised in Table 
1, where * denotes the extreme value tested. 
 

 
Table 1. Allowable perturbations of UAV inertial properties and geometry 

Example in Fig. 13  demonstrates results for varying empty mass.  Dashed cyan and green 
lines on the trajectory graphs represent the ‘unrolled’ along the flight path traces of the tips 
of the recovery boom (lateral position on the top view and vertical position on the side 
view). The bar on the right hand side illustrates the size of recovery window. 
For some parameters, no noticeable drop in performance is experienced within the testing 
limits. These limits indicate quite large perturbations that can reasonably be expected. The 
main perturbations that cause a performance degradation are those that affect the physically 
attainable trajectory and not the operation of the controller, e.g. increasing weight and 
decreasing wing area. However, as follows from the above analysis, careful adjustment of 
elevator efficiency and/or horizontal stabiliser incidence may help to increase the tolerance 
to increased weight. There is still sufficient margin in angles of attack and engine power. 
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Fig. 13. Flight path and control signals with varying empty mass 
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The other parameters evaluated in this research were the perturbations of the power unit 
parameters, the aircraft aerodynamics parameters and sensor noise (Khantsis, 2006). 
Overall, these tests have not exposed any significant robustness problems within the 
controllers. Large variations in single aircraft parameters caused very few control problems. 
However, such variations cannot realistically judge the performance of the controllers under 
simultaneous perturbations of multiple parameters. 

6. Conclusions 
In this chapter, an application of the Evolutionary Design (ED) is demonstrated. The aim of 
the design was to develop a controller which provides recovery of a fixed-wing UAV onto a 
ship under the full range of disturbances and uncertainties that are present in the real world 
environment. 
Evolutionary computation is an attractive and quickly developing technique. 
Methodological shortcomings of the early approaches and lack of intercommunication 
between different EA schools contributed to the fact that evolutionary computation 
remained relatively unknown to the engineering and scientific audience for almost three 
decades. Despite computational demands, evolutionary methods offer many advantages 
over conventional optimisation and problem solving techniques. The most significant one is 
flexibility and adaptability of EAs to the task at hand. 
In this study, a combination of the EA methods is used to evolve a capable UAV recovery 
controller. An adapted GP approach is used to represent the control laws. However, these 
laws are modified more judiciously (yet stochastically) than commonly accepted in GP and 
evolved in a manner similar to ES approach. 
One of the greatest advantages of developed methodology is that minimum or no a priori 
knowledge about the control methods is used, with the synthesis starting from the most 
basic proportional control or even from ‘null’ control laws. During the evolution, more 
complex and capable laws emerge automatically. As the resulting control laws demonstrate, 
evolution does not tend to produce parsimonious solutions. 
The method demonstrating remarkable robustness in terms of convergence indicating that a 
near optimal solution can be found. In very limited cases, however, it may take too long 
time for the evolution to discover the core of a potentially optimal solution, and the process 
does not converge. More often than not, this hints at a poor choice of the algorithm 
parameters. 
The simulation testing covers the entire operational envelope and highlights several 
conditions under which recovery is risky. All environmental factors—sea wave, wind speed 
and turbulence—have been found to have a significant effect upon the probability of 
success. Combinations of several factors may result in very unfavourable conditions, even if 
each factor alone may not lead to a failure. For example, winds up to 12 m/s do not affect 
the recovery in a calm sea, and a severe ship motion corresponding to Sea State 5 also does 
not represent a serious threat in low winds. At the same time, strong winds in a high Sea 
State may be hazardous for the aircraft. 
On the whole, Evolutionary Design is a useful and powerful tool for complex nonlinear 
control design. Unlike most other design methodologies, it tries to solve the problem at hand 
automatically, not merely to optimise a given structure. Although ED does not exclude 
necessity of a thorough testing, it can provide a near optimal solution if the whole range of 
conditions is taken into account in the fitness evaluation. In principle, no specific knowledge 
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about the system is required, and the controllers can be considered as ‘black boxes’ whose 
internals are unimportant. Successful design of the controller for such a challenging task as 
shipboard recovery demonstrates great potential abilities of this novel technique. 
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1. Introduction    
Estimation of Distribution Algorithms (EDAs) (Mühlenbein et al., 1996; Mühlenbein & PaaB, 
1996) are a promising area of research in evolutionary computation. EDAs propose to create 
models that can capture the dependencies among the decision variables. The widely known 
Genetic Algorithm could benefit from the available dependencies if the building blocks of 
the solution were correlated. However, it was proved that the building blocks of a genetic 
algorithm have a limited capacity for discovering and using complex relationships 
(correlations) among variables. EDAs instead, focus on learning probability distributions 
which serve as the vehicle to capture the data dependencies and the data structure as well. 
In order to show how the proposed method unifies the theory for infinite sized population 
with the finite sized population case of practical EDAs, we explain them first. An EDA with 
infinite sized population would perform the steps shown in the algorithm in Table 1. 
 

EDA with an infinite size population 
1 t=0 
2 Initialize a probability model p(x,t) (usually a uniform distribution). 
3 Generate an infinite sized sample Xt from p(x,t). 
4 Evaluate Xt in the objective function(s) and constraint(s). 
5 Compute the selection distribution pS(x,t), and use it as the new 

search distribution. Then: p(x,t+1) = pS(x,t). (Selection and model 
rcomputation step) 

6 t=t+1 
7 If the stop criterion is not reached go to Step 3 

Table 1. The estimation of distribution algorithm with an infinite size population: the 
selection distribution is equal to the search distribution. 

The selection method introduces the search bias necessary to improve the current best 
solution, and in fact, “pushes” the population towards the optimum. For this case where the 
population is infinite, imagine a probability value could be computed for every point in the 
search space. Therefore, the “exact” probability distribution of the selected individuals 
(which is also an infinite set), can be used to sample the new population. Such distribution, 
the selection distribution, is the probability of any point in the search space of being 
selected. Four selection distribution formulas for an infinite population are shown in Table 
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2, left column: Truncation, Boltzmann, Proportional, and Binary Tournament selections. In 
the same table but right column, we show the proposed empirical selection distributions 
studied in this paper. The first objective of this paper is to show that the proposed 
distributions converge to the theoretical ones as the population grows. The second objective 
is to apply the empirical distributions in practical EDAs, and to compare their performance 
through the analysis of several experiments. It has been proved that the ideal EDAs with 
any of the four selection distributions shown, converges to the optimum after a large 
number of generations (Zhang & Mühlenbein, 2004). 
 
Selection Model Empirical Selection Distribution 
Truncation 
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Table 2. Left: Selection models for the EDA with an infinite sized population. Right: the 
respective empirical selection distribution. 

Let us now contrast the infinite sized population case with the standard practical EDA, 
thereby, with a finite sized population. The practical EDA is presented in the algorithm in 
Table 3. Notice the selection operator returns a selected set S

tX whose size is a fraction of the 
total population. In the next step the standard EDA seeks to approximate the distribution of 
the selected set via a parametric distribution. The distribution parameters, and in some cases 
the data structure, are learned from the selected set. Such distribution, the search 
distribution, is the model (with a predefined structure), used for learning the underlying 
joint probability density of the selected set, ),()1,( tXptxp S

t≈+ . Also, note that the next 
population is simulated from the search distribution. The search distribution and its 
learning algorithm are so important for an EDA that, in fact, gives name to the EDA version. 
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Examples of search distributions are: Bayesian networks (Pelikan et al.., 1999), Polytrees 
(Soto & Ochoa, 2000), and Dependency Trees in discrete spaces. Also, Gaussian univariate 
and multivariate models (Bosman & Thierens, 2000; Larrañaga et al., 1999) in the continuous 
case, among others (Larrañaga & Lozano, 2001; Lozano et al., 2006; Pelikan et al., 2006). 
 

Standard EDA with a finite size population 
1 t=0 
2 Initialize a probability model p(x,t) (search distribution). 
3 Generate an infinite sized sample Xt from p(x,t). 
4 Evaluate Xt in the objective function(s) and constraint(s). 
5 St←SELECTION(Xt) (selection step) 
6 Recompute the search distribution model p(x,t+1), such 

that, p(x,t+1)≈p(St) (parametercomputation step). 
7 t=t+1 
7 If the stop criterion is not reached go to Step 3 

Table 3. The estimation of distribution algorithm with a finite size population: the search 
distribution is computed by learning parameters from the selected set. 
The approach introduced in this work is shown in the algorithm in Table 4. No selection 
operator is used, our approach firstly calculates the proposed empirical selection 
distribution to approximate to the theoretical selection distribution. The empirical selection 
distribution, ),(ˆ txp i

S , is the exact selection distribution when the population is thought as a 
model of the whole search space. Then, the search distribution model is created directly 
using the information from the empirical selection distribution, and used to simulate the 
new population. Remember, the empirical selection distribution equations are presented in 
Table 2, right column. The calculation of the empirical selection distribution is easy (as we 
shall explain later), however, its main advantage is to carry all the information needed to 
build the best approximating search distribution. 
 

EDA with the Empirical Selection Distribution 
1 t=0 
2 Initialize a probability model p(x,t) (search distribution). 
3 Generate an infinite sized sample Xt from p(x,t). 
4 Evaluate Xt in the objective function(s) and constraint(s). 
5 Compute the empirical selection distribution 

),(ˆ txpS (selection step) 
6 Recompute the search distribution model p(x,t+1), with  

),(ˆ txpS  (parametercomputation step). 
7 t=t+1 
7 If the stop criterion is not reached go to Step 3 

Table 4. The estimation of distribution algorithm with a finite size population: the search 
distribution is computed by learning parameters from the selected set. 

The chapter is presented as follows: Section 2 briefly reviews the most common selection 
methods used in EDAs. Section 3 discusses about the convergence of the empirical selection 
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distribution to the exact selection distribution. Section 4 introduces the general method to 
approximate the search distribution to the selection model. Section 5 is a comparison with 
related work. Section 6 presents well known EDAs, which have been modified to apply the 
proposed method. A set of experiments is presented in Section 7 and discussion about the 
performance of different selection methods. Finally, Section 8 shows the perspectives of 
future work and concludes. 

2. Selection methods 
The main goal of a selection operator is to bias the population towards promising regions of 
the search space. Truncation, Boltzmann, Proportional and Tournament selection operators 
discussed in this paper are introduced through an example. Assume the following objective 
function and an infinite sized population whose elements have as fitness the function value 
at 42exp20cos42exp 22 +−++−= )(|y|x)()(|x|(x,y) . The plot of this function is shown in 
Figure 1(a). Most of the EDAs draw the initial population from a uniform distribution, 
which is shown in Figure 1(b). Hence, during the first iteration any point has the same 
sampling probability. Assuming an infinite sized population, the rest of the figures show the 
selection distribution function. 
• The Truncation selection is shown in Figure 1(c). This selection is widely used by many 

EDAs. Here the select set would be the best population above a function threshold of 
30=θ . The probability density of the truncation selection is shown in Figure 1(c). 

Observe the flat area; it means the selection probability for the population above the 
threshold value is the same. The truncation selection hides the roughness of the 
objective function above the threshold value by assigning to such area the same 
selection probability. 

• The Boltzmann selection is shown in Figure 1(d). This operator exponentially favors 
the most promising regions (the zones with high function value), as shown in Figure 
1(d). Most of the probability mass is condensed on a single peak which corresponds to 
the function optimum. Since the remaining region is quite flat, the Boltzmann selection 
will deliver a selected set clustered on the peak region. 

• The Proportional selection is shown in Figure 1(e). This operator, proposed by John 
Holland for the standard genetic algorithm, selects points with some probability 
directly proportional to its objective value. The resulting probabilistic model of this 
method, shown in Figure 1(e), is very similar to the objective function (although in a 
different scale). 

• The Tournament selection is shown in Figure 1(f). The tournament selection picks the 
best point found in a randomly chosen subset of the population. The usual size of the 
subset is 2. Figure 1(f) shows that the resulting probabilistic model acquires the 
roughness of the objective function. A larger subset would increase the selection 
pressure on the winning individual, therefore, flatting the density function shown. 

Zhang and Mühlenbein have shown the selection models just illustrated can drive the 
population to the function optimum (Zhang & Mühlenbein, 2004). The main factor that 
makes convergence possible is the bias the selection operator introduces into the population. 
In the following section we provide simple proofs of the convergence of the empirical 
selection distribution to the selection distribution. 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 1. a) Objective function example, b) uniform distribution, c) to f) probability densities of 
the most widely used selection methods.   
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3. Convergence of the empirical selection distribution to the selection 
distribution 
The empirical selection distribution equations for the four selection methods are shown in 
Table 2. In this section we provide simple proofs on the convergence of the empirical 
selection distribution to the selection distribution with large population size. In fact, the 
larger the population size, the better the approximation of the empirical selection 
distribution to the selection distribution.  

3.1 Discrete variables 
Assume an EDA with discrete variables and a search distribution denoted by ),( txp  (the 
continuous case will be further tackled). 
Truncation selection. Say the search space is described by m  binary variables, 
{ }myyy ,...,, 21 . There are mn 2=  combinations, and denote by ix , { }ni ,...,2,1=  to each 
combination. Then, for a large sample X  with size nX >>|| , every combination ix  receives 
a frequency ifreq  of instances. The empirical selection distribution at generation t  is given 
by: 

 
||

1),,(ˆ
t

iti
S

S
freqtxp ⋅=θ  (1) 

Being || tS  the number of instances of X  such that txf θ>)( . Now recall that for a infinite 
sample ),(||/ txpXfreq ii = , then for ||/||)( XSt t=α  the empirical selection distribution is 
given by: 
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which is exactly the expression given in Table 2 for the infinite sized population. The 
)(tα value is the proportion of truncated solutions. 

Boltzmann selection. The empirical selection model is given by: 
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then, in an analogous way to the truncation method: 
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Substituting ),(|| txpXfreq ii ⋅= , and ),(|| txpXfreq ii ⋅= , ∑
=

⋅=
n

k

xft
k

ketxptZ
1

)()(),()( β , then:  



Efficient Estimation of Distribution Algorithms by using the Empirical Selection Distribution  

 

235 

 
)(

),(),(ˆ
)()(

tZ
etxptxp

ixft
i

i
S

β⋅
= , (5) 

So, we have the exact Boltzmann selection distribution. 
Proportional selection. The empirical selection model is given as follows: 

 

∑
=

= X

k
k

i
i

S

xf

xftxp

1

)(

)(),(ˆ , (6) 

then: 
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Substituting, ),(|| txpXfreq ii ⋅=  then: 
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and ∑
=

⋅=
n

k
kk xftxptE

1

)(),()( , then the empirical selection for such large sample X  is given 

by: 
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which is exactly the expression in Table 2. 
Binary tournament selection. For the tournament selection method the exact selection 
distribution for the discrete case is given by: 

 
C

typtxp

txp ixfyf
i

i
S

∑
<= )()(

),(),(

),(ˆ , (10) 

being C the normalization constant, the number 2 in Table 2 is also a constant, so it is 
absorbed by C. Then the empirical selection distribution is given by: 
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Where )()(if,1),( ij xfxfjiI <=  and 0 otherwise. The term ∑∑
= =

X

i

X

j

jiI
1 1

),( is a normalization 

constant. Then, considering that for any y value the number of instances in the large 
population X  are ),(|| typXfreqy ⋅= , and the number of instances of a variable (vector) 
value  ix  is ),(|| txpXfreq ii ⋅= , then substituting: 
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which is the exact selection distribution for ∑ ∑
= <

⋅=
||

1 )()(

),(),(
X

i xfyf i

typtixpC . 

3.2 Continuous variables 
For the continuous case, consider a univariate search space with domain in the interval [a,b], 
then a set of points ix  for i=1,2,...,|X| define partitions. If we use these points as possible 
instances of a discrete variable, then, we have the equivalence with the discrete selections 
distribution previously shown. The partition size is 1i i ix x+Δ = − , if ε<Δi , the sums in 
Equation 8 can be written as Riemann sums. Even though this is not a proof for continuous 
cases, it is a strong argument to explain the convergence of the empirical selection 
distribution to the selection distribution. Figure 2 shows the similarities between the exact 
selection density function and the empirical selection distributions. 

4. Computing the search distribution 

Following the usual steps of an EDA, an arbitrary large sample should be obtained from the 
empirical selection distribution, and then used to learn the search distribution parameters. 
In our approach, sampling the empirical selection is avoided without diminishing the 
advantages of using all the information at hand. It is known that the relative frequency of a 
point ix  for an infinitely large sample is equal to the probability ),(ˆ txp i

S . Thus, the sampling 
process can be avoided and ),(ˆ txp i

S  can be used as the frequency of the point ix . 
For example, suppose that the search distribution is a Gaussian with mean μ  and variance 
v. These parameters must be computed to get the best approximation of the Gaussian to the 
selection model. Assume (for a moment) that a sample Ŝ  of size |ˆ|S  is obtained from the 
empirical selection distribution. The only possible values sampled from the empirical 
selection distribution are those in the population. Hence, most of the points ix  would get 
more than one instance in the sample Ŝ . Denote the number of instances of a point ix  
as ifreq , the estimator of the mean is: 
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Selection Model Empirical Selection 
Truncation 

  
Boltzmann 

  
Proportional 

  
Binary Tournament 

  
Fig. 2. Left: Selection model plot. Right: empirical selection distribution plot. 

Let us denote ),(ˆˆ txpp i
SS

i = . We know that when ∞→|ˆ|S , then, S
i

i p
S

freq ˆ
|ˆ|

= . Substituting this 

term in Equation 13, the mean is simply computed as follows: 
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S
i xpμ , (14) 

where S
ip̂  is the probability of a point computed with the empirical selection distribution. 

Therefore, sampling the empirical distribution is not necessary. Also important, note that 
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the computation of the probabilities S
ip̂  is independent of the search distribution 

parameters. This allows us to easily adapt an EDA to any of the four selection models. These 
models cover most EDA implementations and other selection methods can be also expressed 
as distributions.  In addition, the computational cost of S

ip̂  in most of the cases is lower or 
equal to that of applying a selection operator. For example, the Proportional and Boltzmann 
selections must calculate the probabilities in Table 2 in order to obtain a sample which 
becomes the selected set. This sample is not necessary for the empirical selection distribution 
based EDA (ES-EDA). For the truncation method in the standard EDA as well as the ES-
EDA, it is only necessary to know the individuals whose objective function is greater than 

tθ , thus, the computational cost is the same. The binary tournament selection requires 
comparisons of the order of the selected set size, while the empirical selection distribution 
requires comparisons of order |X|(|X|-1)/2, hence, it is the unique case in which an ES-
EDA has a greater cost than the standard EDA. The parameter computation in the ES-EDA 
in general increases its computational cost only by multiplying each individual value xi by 
its corresponding frequency S

ip̂ , which is a minimal cost. 

5. Related work 
In order to show that this work is an extension of previous but less general approaches, we 
will show the equivalence of the resulting formulae when applying frequencies from the 
empirical selection distribution. Yunpeng et al. (Yunpeng et al., 2006) approximate the 
Boltzmann distribution with a Gaussian model by minimizing the Kullback-Leibeler 
divergence. The computation of the Gaussian distribution parameters is presented in 
Equations 15 and 16. Note that this approach which requires costly analytical work, gives 
exactly the same formulae as the Boltzmann empirical selection distribution presented in 
Table 2 with the UMDAc and the EMNAglobal. 
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6. Modifying successful EDAs with the empirical selection distribution 
This section presents several successful EDAs which have been modified to accept the 
relative frequencies given by the empirical selection distribution. Continuous and discrete 
EDAs with univariate and multivariate models are presented. Table 5 presents the notation 
used.  
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),( txp  Search distribution in generation t. 
n Number of variables. 

tX  Population. 
||X  Population size. 

S
jp̂  Frequency of  ix , according to ),(ˆ txp i

S  in Table 2. 
tF  Population objective values. 
bestX  An optimum approximation. 

),( kxI  Indicator, 1 if kxi = , and 0 otherwise. 

Table 5. Notation used for the empirical selection based EDAs. 
A practical EDA based on the empirical selection distribution is presented in Table 6. Since 
the parameter computation in line 8 is the only section that should be changed according to 
the particular search distribution, a pseudo-code is separately presented for each algorithm. 
The selection procedure in line 6 must be understood as the computation of the empirical 
selection distribution (according to Equations in Table 2). 
 

Practical EDA based on the Empirical Selection Distribution 
1 Initialize the search distribution model p(x,0) 
2 Sampling(Xt ,p(x,0)) 
3 Evaluation(Ft , Xt) 
4 While the stopping criterion is not met do 
5  Selection( ),(ˆ txpS , Xt, Ft) 
6  Parameter_Computation(p(x,t), ),(ˆ txpS , Xt , Ft) 
7  Sampling(Xt+1, p(x,t)) 
8  Evaluation(Ft, Xt+1) 
9  Elitism(Xbest, Ft+1, Xt+1) 
10 End While 
Ensure: An optimum approximation Xbest. 

Table 6. Pseudo-code a practical EDA based on the empirical selection distribution. 
 

1 For (i=1 to n) { 
2  For (k=1 to mi) { 
3   

∑
=

⋅=
||

1
, ˆ),(

X

j

S
jjki pkxIb  

4  }  
5 }   

Table 7. Pseudo-code for the ES-UMDA parameter computation. 

6.1 UMDA 
The Univariate Marginal Distribution Algorithm (UMDA) was introduced by Mühlenbein 
and PaaB (Mühlenbein & PaaB, 1996). It is based on the estimation of univariate marginal 
probabilities. This model considers that all variables are statistically independent. It uses the 
simplest model for discrete distributions. Each variable ix  has attached a probability 
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vector kib , , that is, the probability of ix  taking the value k, is: )(, kxpb iki == . Note that in the 
original UMDA the computation of the parameter kib ,  is basically done by counting bits of a 
variable of the selected set.   
The UMDA is quite simple to adapt to the relative frequencies given by the empirical 
selection distribution. The pseudo-code of the ES-UMDA (ES=Empirical Selection) 
parameter computation is shown in Table 7. 

6.2 UMDAc 
The Univariate Marginal Distribution Algorithm for continuous domains (UMDAc) was 
introduced by Larrañaga et al. (Larrañaga et al., 1999). It uses a univariate model, in the 
specific case of UMDAGc, there are n univariate Gaussian distributions (for a n-dimensional 
problem). Two parameters are needed for the Gaussian at each dimension i, the mean iμ  
and the standard deviation σi. The computation of both parameters is simply done by 
weighting each point by its corresponding relative frequency (probability) as shown in 
Table 8. 
 

1 For (i=1 to n) { 
2  
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i xpμ  

3  
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S
ii xp μσ  

4 }   

Table 8. Pseudo-code for the ES-UMDAc parameter computation. 

6.3 K2-Bayesian-network based EDA 
Bayesian networks have been successfully used in EDAs, for instance the Bayesian 
Optimization Algorithm (BOA) introduced by Pelikan et al. (Pelikan et al., 1999). A BOA-
like algorithm based on the K2 algorithm (Cooper & Herskovits, 1992) is presented. The 
parameter computation has been modified to use the empirical selection distribution. The 
K2 is a greedy heuristic search method, for maximizing the probability P(BS,D) of the 
structure BS and the data D. For maximizing P(BS,D) the K2 maximizes ),( iig π , which is a 
measure related with the probability of xi given a set of parents πi. 
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where xi has ri possible discrete values. Each variable xi in Bs has a set of parents, which are 
represented by a list of variables πi. Nijk is the number of cases in D in which the variable xi 
has the value vik, and πi is instantiated as wij. wij denotes the j-th unique instantiation of πi 

relative to D, and qi is the number of such unique instantiations of πi. ∑
=

=
ir

k
ijkij NN

1

. For a 

deeper explanation of the K2 algorithm the reader is directed to (Cooper & Herskovits, 
1992). 
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Learning a Bayesian network with the K2 is a counting process of point instances. Then, in 
order to compute Equation 17 an integer frequency for each point is needed. For obtaining 
an integer frequency, let us define a sample size for the selection method, say |ˆ|S . When 
using the empirical selection distribution we have a relative frequency S

lp̂  associated with a 
point xl, if that point is such a case for ijkN , then, instead of summing a single case we will 
sum )ˆ|ˆ(|integer S

lpS ⋅ . As |ˆ|S  grows, the approximation of the K2 Bayesian network to the 
empirical selection distribution will be more accurate, but the computational cost of 
Equation 17 increases as well. Once the K2 Bayesian network structure has been learned, the 
frequencies S

lpS ˆ|ˆ| ⋅  must be used to compute the conditional probabilities. 

6.4 EMNAglobal 
The EMNAglobal was introduced by Larrañaga et al. (Larrañaga et al., 2001). It is based on the 
estimation of a multivariate normal density function. This model can represent linear 
dependencies between normal variables in the covariance matrix. The pseudo-code of the 
ES-EMNAglobal parameter computation is shown in Table 9. Note that it is quite easy to 
insert the empirical selection distribution in univariate as well as multivariate algorithms, 
also it is inserted in discrete and continuous domains with a minimum analytical and 
computational effort.  
 

1 For (i=1 to n) { 
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Table 9. Pseudo-code for the ES-EMNAglobal parameter computation. 

7. Experiments and performance analysis 
This section provides a set of experiments to address the performance and advantages of the 
empirical selection distribution. Two kinds of experiments are presented: 
1. Graphically we show that the search distribution based on the empirical selection 

distribution constitutes a robust and better approximation to the selection model.  
2. Using the EMNAglobal (Larrañaga et al., 2001) and the BMDA (Pelikan & Mühlenbein, 

1999), we show the impact of the empirical selection distribution on the EDA 
performance. 

7.1 Graphical comparison 
For better plots, the unidimensional objective function shown in Figure 3 is used. This 
analysis contrasts the three concepts discussed in the introduction: the ideal EDA, the 
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standard EDA, and the EDA  with the empirical selection distribution, combined with the 
four discussed selection methods.  
Even though the exact selection distribution can be computed for the ideal EDA, to perform 
the correct comparison we use a predefined Gaussian model for the three approaches.  We 
show the Gaussian approximation with a very large population (considered as infinite), 
contrasted with the approximation computed by using the selected set from a standard 
sized population, and the approximation computed by using the empirical selection 
distribution. The experiments are designed as follows:  
• The ideal EDA. A very large population (104 individuals) equally spaced is used, then, 

a larger selected set (105) is extracted using the selection method. Using the huge 
selected set (105 individuals) the parameters of the search distribution are computed. 
This approximation will be called the exact approximation. A special case is the 
truncation method which uses the same population size, but a smaller selected set is 
obtained by truncating at 9.0=θ . 

• The standard EDA. A relatively small population (30 individuals) is randomly drawn, 
the selection method is applied delivering the selected set used to compute the search 
distribution. Most of the selection methods add randomness to the procedure (except 
the truncation method which delivers a deterministic selected set), as a consequence the 
search distributions could differ after applying the selection method to the same 
population several times. Thus, we present the different search models computed when 
selecting 10 selected sets of 15 individuals from the same population. 

• The EDA with the empirical selection distribution. Using the same population of 30 
individuals used by the standard EDA, the empirical selection distribution is used to 
compute the search distribution parameters. Notice that the empirical selection 
distribution is unique for a given population as well as the search model delivered by 
this method. 

 

 
Fig. 3. Unidimensional objective function used for the graphical experiments. 

Truncation selection. The truncation method shown in Figure 4(a) is basically the same for 
the standard EDA and the empirical selection distribution, because the points used are the 
same in both approximations. Thus, in this case the empirical selection performs at least as 
well as the standard selection method. 
Boltzmann selection. As shown in Figure 4(b), the empirical selection method delivers a 
very good approximation to the exact model. The search models computed by the standard 
EDA approximation are a belt of Gaussians.  The empirical selection approximation is at the 
middle of this belt, it is less affected by a single point or small set of points (robustness). It is 
possible that the randomness of the standard selection method guides the search to a better 
optimum approximation. In general, it is not the expected behaviour, given its difference 
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with the exact model, the small size of the selected set (usually 50% of the population) and 
the consequent loss of information which favors the tendency of being biased to sub-optimal 
regions. Also, it is expected that the behaviour of the Boltzmann selection varies according 
to the β  value. The empirical selection computes the same search model from the same 
population, thus, a more stable behaviour is expected in contrast with the standard EDA. 
This could be especially useful when designing annealing schedules, because with the 
empirical selection distribution a similar performance under similar conditions is expected. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 4. Selection methods: (a) truncation, (b) Boltzmann, (c) proportional and (d) tournament. 
Search distributions for: 1) The exact approximation with dashed line, 2) the standard EDA 
approximation with doted lines, and 3) the empirical selection approximation with solid 
line. The objective function (solid line), and the population used for practica EDAs (circles). 
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Proportional selection. The proportional selection does not use extra parameters, therefore, 
no expensive parameter tuning is required. At the same time, however, there is no way to 
control the high selection pressure exerted over the fittest individuals that usually lead the 
population to premature convergence. Thus, a search distribution which better represents 
the selection method could be useful, also a more predictable search model is useful when 
tuning other controls such as the population size, because the expected behaviour could be 
better inferred. Figure 4(c), shows the search densities (points) computed when applying the 
selection method 10 times on the same population. Notice that these models are easily 
biased to different regions, most of them suboptimal. 
Binary tournament selection. The binary tournament selection seems to be the most robust 
selection method according to Figure 4(d). The plot shows that this selection delivers 
Gaussians more similar than those delivered by other selection methods. This selection can be 
used as a reference for the expected performance of an EDA, considering the robustness, and 
the good performance of this selection according to the experiments in the next section.  The 
parameter tuning for other selection methods can be done trying to obtain at least the same 
performance as the binary tournament selection. It is parameter free, and it is less sensible to 
large objective values in the population. As shown in Figure 4(d) the empirical selection 
distribution computes an accurate approximation when compared with the exact method. 

7.2 Performance comparison 
It has been previously shown that the estimation of the search distribution according to the 
empirical selection distribution accurately approximates the exact search distribution.  Other 
claim is that the empirical selection distribution preserves some building blocks that can not 
be preserved by the standard EDA, due to the fact that the last one only uses a part of the 
population, while the empirical selection based EDA use the whole population in most of 
the cases.  To support these arguments, we present experiments using the bivariate marginal 
distribution algorithm (BMDA) (Pelikan & Mühlenbein, 1999), and the EMNAglobal 
(Larrañaga et al., 2001), as well as the counterparts based on the empirical selection 
distribution: the ES-BMDA and ES-EMNAglobal.  

7.3 Test 1. The EMNAglobal 
We present a comparison using the EMNAglobal and three problems widely used to test 
EDAs performance (Larrañaga et al., 2001): Sphere, Griewangk and Rosenbrock. In order to 
maximize the functions and convert them to have positive objective values, an objective 
function g(x) is adjusted as: f(x)=-g(x)+1.8e7, and f(x) is used as the fitness function. 
Experiments description: 30 independent runs are performed with 50 variables, the domain 
for all variables is [-600,600], the population size is 2000,  selecting 1000 individuals for the 
standard EMNA. Truncation is  50% of the population, and elitism according to the general 
EDA in Table 6. The annealing schedule for the Boltzmann selection is fixed by initializing 

00 =β , n/100=Δβ , and βββ Δ+= −1tt . For the Rosenbrock function n/50=Δβ . For the 
Boltzmann and proportional selections the objective function is normalized by applying 
f(x)=g(x)-gmin/(gmax-gmin+1), in order to avoid numerical problems.  
Stopping criterion: 300 000 function evaluations.  
Results: Table 10 compares the results obtained by the standard EMNA (denoted by St.), 
and the Empirical Selection based EMNA (denoted by ES). We report the mean and 
standard deviation of the objective function as well as the result of a hypothesis test based 
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n  Truncation Boltzmann Proportional Binary 

Tournament 
Sphere 

St 5.048e-9 (1.158e-9) 2.168e-6 (7.745e-7) 7.703e-2 (2.666e-2) 6.219e-9 (1.234e-9) 
ES 5.159e-9 (1.105e-9) 2.370e-6 (5.901e-7) 6.738e-2 (2.347e-2) 5.762e-9 (1.395e-9) 

10 

Hyp. Test N N N N 
St 3.767e-8 (7.306e-9) 9.924e-1 (1.356) 7.365 (2.314) 6.607e-8 (1.166e-8) 
ES 3.790e-8 (6.003e-9) 1.092 (2.298e+0) 6.661 (1.071) 7.628e-8 (1.074e-8) 

20 

Hyp. Test N N N St 
St 1.093e-7 (1.123e-8) 2.725e+1 (1.804e+1) 2.018e+2 (1.524e+2) 1.660e-5 (1.914e-6) 
ES 1.091e-7 (7.991e-9) 1.726e+1 (1.503e+1) 5.549e+1 (1.005e+1) 3.520e-5 (3.874e-6) 

30 

Hyp. Test N ES ES St 
St 2.213e-7 (1.673e-8) 1.060e+2 (4.624e+1) 1.283e+3 (6.554e+2) 1.889e-3 (2.983e-3) 
ES 2.239e-7 (1.682e-8) 6.394e+1 (4.757e+1) 2.142e+2 (2.060e+1) 1.094e-3 (1.099e-4) 

40 

Hyp. Test N ES ES ES 
St 1.999e-6 (2.266e-7) 4.289e+2 (1.779e+2) 4.735e+3 (1.379e+3) 3.543 (5.801) 50 
ES 1.712e-6 (2.082e-7) 1.826e+2 (9.569e+1) 5.357e+2 (6.471e+1) 1.111e-2 (1.032e-3) 

 Hyp. Test ES ES ES ES 
Griewnagk 

St 9.356e-10 (2.077e-10) 0.36098 (0.18955) 0.3194 (0.05671) 1.062e-9 (3.608e-10) 
ES 9.231e-10 (2.251e-10) 0.17173 (0.09324) 0.3343 (0.06324) 1.114e-9 (2.647e-10) 

10 

Hyp. Test N ES N N 
St 4.921e-9 (5.351e-10) 0.19738 (0.19323) 0.6325 (0.07413) 1.003e-8 (1.788e-9) 
ES 4.968e-9 (6.329e-10) 0.06382 (0.08591) 0.6553 (0.04763) 1.207e-8 (1.526e-9) 

20 

Hyp. Test N ES ES St 
St 1.044e-8 (1.007e-9) 0.13667 (0.11265) 1.0302 (0.06677) 1.125e-6 (1.846e-7) 
ES 1.004e-8 (9.885e-10) 0.03527 (0.05150) 0.9466 (0.03131) 2.223e-6 (3.029e-7 

30 

Hyp. Test N ES ES St 
St 1.817e-8 (1.357e-9) 0.26945 (0.12897) 1.3946 (0.19001) 6.056e-4 (2.088e-3) 
ES 1.809e-8 (1.694e-9) 0.05683 (0.05088) 1.0543 (0.00679) 4.868e-5 (5.506e-6) 

40 

Hyp. Test N ES ES ES 
St 7.568e-8 (1.352e-8) 0.54303 (0.24312) 2.3571 (0.46186) 1.036e-1 (1.265e-1) 50 
ES 6.852e-8 (1.364e-8) 0.17259 (0.07979) 1.1365 (0.02057) 3.899e-4 (3.021e-5) 

 Hyp. Test ES ES ES ES 
Rosenbrock 

St 9.292 (7.714) 6.795 (0.5562) 1.125e+05 (65566) 7.647 (0.2958) 
ES 8.929 (3.113) 6.862 (0.4907) 1.133e+05 (56613) 7.880 (0.7487) 

10 

Hyp. Test N N N St 
St 20.131 (5.753) 19.404 (2.4900) 1.313e+07 (7154997) 17.915 (0.9468) 
ES 19.339 (4.762) 18.386 (1.1359) 9.138e+06 (2823051) 17.657 (0.8191) 

20 

Hyp. Test N ES ES N 
St 28.865 (1.218) 35.728 (7.9373) 1.656e+08 (154793875) 31.681 (8.1603) 
ES 30.695 (6.149) 35.246 (5.2851) 5.800e+07 (16388688) 27.852 (0.6024) 

30 

Hyp. Test N ES ES ES 
St 42.413 (4.465) 71.699 (18.6654) 5.469e+08 (269436266) 84.128 (52.2806) 
ES 41.709 (3.324) 53.984 (8.8081) 1.845e+08 (53383769) 40.544 (3.1687) 

40 

Hyp. Test N ES ES ES 
St 65.604 (13.422) 1109.840 (3713.7494) 1.183e+09 (641262869) 2594.724 (3675.9199) 50 
ES 60.987 (9.248) 93.034 (16.7544) 3.695e+08 (82888904) 61.753 (4.9202) 

 Hyp. Test N ES ES ES 
 

Table 10. Performance comparison between the standard EMNAglobal (St) and the empirical 
selection distribution based EMNAglobal (ES). 
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on the Bootstrap methodology with a significance of 5% (Efron & Tibshirani, 1993). We test 
that the mean of the ES-based EMNAglobal is less than the mean of the standard EMNAglobal, 
and vice versa.  An N below the mean and standard deviation means that neither is better, 
St means that the standard EMNAglobal is the best, an ES that the empirical selection based 
EMNAglobal is the best. The conditions of the experiment are maintained while the 
dimensions are growing, the purpose is to show that the empirical selection in general 
performs better, and can use the information efficiently. Note that the standard EDA (St-
EDA) and the Empirical Selection EDA (ES-EDA) are very similar in lower dimensions, but 
for higher dimensions the ES-EDA clearly outperforms the St-EDA. The explanation is that 
the population size is not growing with the dimensions, thus, for lower dimensions the 
selected set size is enough to adequately estimate the search distribution, but for higher 
dimensions the information is not sufficient, or it is not efficiently used.  The runs where the 
St-EDA outperforms the ES-EDA (tournament 20 and 30 variables), can be explained by 
selection pressure issues. The St-EDA uses a subset of the best individuals in the population, 
no matter which selection method is used. On the other hand, the ES-EDA uses all the 
points, so for the same parameters the variance of the ES-EDA will be greater than the St-
EDA, because the whole population covers a wider region than the selected set. So, the 
convergence of the St-EDA is faster, and the exploration is concentrated in a smaller region, 
resulting in a poor performance for higher dimensions as shown in Table 10. Notice that 
even the hypothesis test says that the St-EDA is better in 4 cases, the ES-EDA finds solutions 
very close to the optimum in all cases. 

7.4 Test 2. The BMDA 
The BMDA works in discrete domains, in this case a binary domain. It builds a graphical 
model with bivariate dependencies, the dependencies are considered according a 2χ  
hypothesis test. The 2χ  computation uses empirical probabilities, thus, the ES-BMDA 
computes these empirical probabilities by summing the relative frequencies S

ip̂  given by the 
empirical selection distribution formulae. For example, if we need to compute the marginal 
probability of the variable jx  takes the value of 1, say )1( =jxp , if an individual i in the 
population is an instance of 1=jx  then we sum S

ip̂ , the standard procedure at the end 
divides the sum over the total number of individuals, when using the empirical selection 
this normalization is not necessary. This test is performed by using the deceptive function of 
order 3 shown in Equation 18, which was also used for the experiments in the original paper 
of the BMDA (Pelikan & Mühlenbein, 1999). 
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For n = 30 we use π = { 6, 27, 18, 20, 28, 16, 1, 23, 24, 3, 2, 13, 8, 5, 17, 11, 29, 15, 30, 9, 25, 12, 
19,  22,  4,  10,  14, 21, 26). For n = 60, π = { 49, 31, 40, 59, 5, 23, 57, 37, 47, 19, 27, 30, 8, 56, 3, 
36, 45, 17, 41 , 33, 21, 53, 39, 51, 50, 29, 16, 10, 24, 55, 15, 32, 7, 13, 2, 52, 14, 60, 12, 22, 34, 25, 
35, 1, 28, 18, 20, 9, 38, 26, 46, 58, 42, 43, 44, 48, 6, 4, 11}. The deceptive function correlates 
subsets of 3 variables. Pelikan and Mühlenbein (Pelikan & Mühlenbein, 1999) shown that 
the BMDA is capable of solving this problem that can not be solved by the simple GA. Our 
purpose is to show that the ES-BMDA is more efficient than the standard BMDA and can 
use the information in the whole population, thus it is capable of finding and using more 
correlations to approximate the optimum. 
Experiments description: We reproduce the settings of the original BMDA paper (Pelikan & 
Mühlenbein, 1999). 30 independent runs are performed with 30 and 60 variables, the 
population size is 1300, selecting 1000 individuals for the standard EDA. 50% of the best 
individuals are preserved no matter which selection is used (as in the original paper) for the 
BMDA and the ES-BMDA. Truncation is 50% of the population, and elitism according to the 
general EDA in Table 6. The annealing schedule for the Boltzmann selection is fixed by 
initializing 00 =β , 1=Δβ , and βββ Δ+= −1tt . For the Boltzmann and proportional 
selections the objective function is normalized by applying f(x)=g(x)-gmin/(gmax-gmin+1), in 
order to avoid numerical problems.  
Stopping criterion: To reproduce the results of the original BMDA we use the ordering 
parameter as stopping criterion (Pelikan & Mühlenbein, 1999). The ordering parameter is 
defined in Equation 20, where p is the vector of univariate marginal frequencies pi(1). When 

95.0)( >pχ  we stop the algorithm that means that the univariate probabilities are almost 1 
or 0. 
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Results: Table 11 compares the results obtained by the standard BMDA (denoted by St.), 
and the Empirical Selection based BMDA (denoted by ES). We report the mean and 
standard deviation of the evaluations and objective function, as well as the result of a 
hypothesis test based on the Bootstrap methodology with a significance of 5% (Efron & 
Tibshirani, 1993). We test that the mean of the ES-BMDA is less than the mean of the 
standard BMDA, and vice versa, for 30 and 60 variables. For the evaluations test we only use 
the runs in which the optimum is found. The evaluations comparison is not perform for 60 
variables, because most of the runs did not find the optimum. The results bring out evidence 
about the arguments that the empirical selection based EDAs are more efficient, and that the 
use of the information in the whole population is an advantage to build optimal solutions, 
because as shown the ES-BMDA needs less evaluations than the St-BMDA, also, the ES-
BMDA is more effective to find the optimum in the 60 dimension runs, so, with the same 
resources (population size) the ES-BMDA can deliver better results. 

8. Perspectives, future work and conclusions 
EDAs researchers have approximated the selection distribution since the first approaches 
(Mühlenbein, 1997; Bosman & Thierens, 2000). This chapter proposes a general method for 
this purpose. Most of the search distributions used by EDAs are parametric, and the  
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n  Truncation Boltzmann Proportional Bin.ary 
Tournament 

Deceptive Function of Order 3,Objective Function 
St 10 (0) 9.993333(0.02537081) 9.997 (0.01825742) 9.997 (0.01825742) 
ES 10 (0) 10 (0) 9.997 (0.01825742) 9.997 (0.01825742) 

30 

Hyp. 
Test N N N N 

St 19.79 (0.1213431) 19.73 (0.1368362) 19.60667 (0.1818171) 19.81 (0.1028893) 
ES 19.84 (0.1101723) 19.85(0.1252584) 19.80667(0.1080655) 19.85333(0.1166585) 

60 

Hyp. 
Test N ES ES N 

Evaluations 
St 14841.67(783.7887) 14300(482.8079) 24526.67(1497.223) 15925(609.5151) 
ES 14755(619.0023) 14148.33(441.2919) 22923.33(869.2777) 15578.33(578.4467) 

30 

Hyp. 
Test N N ES ES 

Number of times the optimum was reached (in 30 runs) 
St 30 28 29 29 30 
ES 30 30 29 29 
St 3 2 0 3 60 
ES 6 9 3 7 

Table 11. Performance comparison between the standard BMDA (St) and the empirical 
selection distribution based BMDA (ES). 

parameters are learned from a sample by counting frequencies. Thus, in addition to the 
presented algorithms, any other search distribution which uses frequencies can be modified 
to use the empirical selection distribution. For instance bivariate models (Pelikan & 
Mühlenbein, 1999) and histograms (Tsutsui et al., 2001) are completely based on frequencies. 
Another important line of study are clustering based algorithms (Larrañaga & Lozano, 
2001), for example the k-means algorithm is based on distances. When using the empirical 
selection distribution in clustering, instead of using a single point in the position ix , we use 
its relative frequency ),(ˆ txp i

S . This measurement will move the mean of the cluster to the 
regions with highest fitness values, helping to perform a better search. 
Important issues in EDAs such as diversity and premature convergence can be tackled using 
the empirical selection distribution. Studies on convergence phases (Grahl et al., 2007) have 
shown that the maximum likelihood estimated variance might not be  the best to perform an 
optimum search. Thus, a possible line of work is: how to favor diversity using the empirical 
selection distribution? A possibility is by simply modifying the fitness function into the 
empirical selection distribution formulae. This line of work may be an alternative to recent 
proposals on variance scaling (Grahl et al., 2006; Bosman et al., 2007). 
Multi-objective applications and how to insert the Pareto dominance in the selection 
distribution is another possible research line. With respect to this topic the Pareto ranking 
seems to be the most natural way of tackling this important issue. 
Ever since the very first proposed EDAs (Baluja, 1994) to the most recent works (Pelikan et 
al., 2008), incremental learning has been applied to the learning distribution phase. Future 
work must contemplate how to insert the empirical selection distribution into incremental 
approaches, or how to use historical or previous empirical selection distributions. 
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The selection methods presented are just a sample of the possibilities, other methods such as 
combined truncation-proportional, truncation-Boltzmann, 3-tournament, etcetera must be 
explored. 
Finally, the advantages of the presented method are summarized as follows:  
• it is easy to implement.  
• It has a wide range of applications. 
• It has low computational as well as analytical cost. 
• It avoids being wrongly biased by a single solution or a small set. 
• It uses all the information from the population to accurately approximate the selection 

distribution. 
• The perspectives, future use and applications are promising, and the possible lines of 

work are really extensive. 
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1. Introduction     
EDAs (Estimation of Distribution Algorithms) present the suitable features to deal with 
problems requiring a very efficient search: small populations and a few iterations, compared 
with the more classic approaches to Evolutionary Algorithms (EAs). The fundamental 
difference of EDAs with classical EAs is that the formers carry out a search of the probability 
distribution describing the optimal solutions while EAs directly make the search and 
provide the solutions to the problem with the solutions itself. They share the necessity of 
codification of solutions by means of binary chains, in the EA terminology they are the 
“individuals” and the definition of a merit measurement that allows to orient the search 
direction, the so called “fitness function”. In the case of EDAs, operators to manipulate 
individuals in the search, such as mutation, selections, and crossover, are not needed, since 
the search is performed directly on the distribution which describes all possible individuals. 
In this chapter, authors will evaluate the efficiency of EDAs to solve combinatorial problems 
with time constrains. Specifically, authors will model the visual data association for real-
time video tracking problem as a combinatorial problem. Before the application of EDAs to 
this real-life combinatorial problem, the authors will discuss the application of EDAs 
algorithms to a classical combinatorial problem, such as the 0/1 knapsack problem, in order 
to know the complexity degree of the association problem and to find out the most suitable 
parameters for real-time video tracking problem [1]. 
The outline of the chapter will be as follows. First, several EDA algorithms will be presented 
and their evaluation using the theoretical combinatorial problem of 0/1 knapsack problem, 
which has similar complexity to the association problem in video tracking systems. Next, the 
mathematical formulation of the Data Association Problem will be shown. Then, the 
applications of EDA to data association problem, defining the heuristic and the codification, 
will be presented. Finally, the authors will show the experiments compare the behaviour of 
several algorithms, taking the advanced Particles-MS tracking as benchmark, in three 
scenarios taken from two different sources: the publicly available CVBASE [2] and a DV 
camcorder. 
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2. Estimation of Distributions Algorithms (EDAs) 
The Estimation of Distribution Algorithms (EDAs) [3] are a family of evolutionary 
algorithms which represents an alternative to the classical optimization methods. 
Algorithmically, a Genetic Algorithm and an EDA only differ in the procedure to generate 
new individuals. EDAs replace the use of an evolving population by a vector that directly 
codifies the joint probability distribution of vectors corresponding to the best solutions. The 
crossover and mutation operators are replaced by rules that update the probability 
distribution. A great advantage of the EDAs on the evolutionary algorithms is that they 
allow expressing the interactions between variables of the problem by means of the 
associated joint probability distribution. In addition, they improve the time of convergence 
and the necessary space of memory for its operation. The algorithm of an EDA is sketched in 
the following graph. 
 

 
Fig. 1. High level outline of EDA steps 

The key point of the use of EDAs is in the estimation of the joint probability distribution. 
The simplest situation is that in which the joint probability distribution factorizes as a 
product of univariate and independent distributions, that is to say, there is no dependency 
between the variables. In this situation the estimation of the probability distribution is made 
using the marginal frequencies. The problem of association exposed in this work allows this 
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treatment and bases the use of EDAs by the characteristic that allows solving an 
optimization problem quickly [4], [5]. In the next section, we describe the EDAs more 
studied and applied to univariate problems and in the appendix the code of each EDA is 
detailed. 

2.1 Description of EDAs algorithms 
In this section, we depict the several concepts on the algorithm used in our work. These 
algorithms are UMDA (Univariate Marginal Distribution Algorithm) [6], PBil (Population-
Based Incremental Learning) [7] and cGA (The Compact Genetic Algorithm) [8].  

2.1.1 UMDA. Univariate Marginal Distribution Algorithm 
In the UMDA [6] the joint probability distribution is estimated as the relative frequencies of 
the variables’ values stored in a data set. Independence between the variables is assumed 
and theoretically it has been demonstrated that UMDA works almost perfectly with linear 
problems and rather well when the dependencies are little significant. 
In UMDA can appear some problems associated to the genetic drift, and some modifications 
have been proposed such as the correction of Laplace to the calculation of the relative 
frequency [9]. In this case the relative frequency is estimated as: 
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There are theoretical evidences that demonstrate that UMDA approximates their behaviour 
to a canonical genetic algorithm (GA) with uniform crossover. 

2.1.2 PBIL. Population-Based Incremental Learning 
The PBIL (Population-Based Incremental Learning) [7] mixes the search applied by genetic 
algorithms with the competitive learning, applying a Hebbian rule to update the vector of 
probabilities. It has been empirically demonstrated that PBil works equal or better than GA 
in problems in which GA works well and fails in the problems that GA fails. The main 
difference with GA is that PBIL does not use a population of solutions that evolves, 
replacing it by a vector of probabilities. This change presents some advantages: 
• The algorithm is simpler, for example it does not require arrangements. 
• The capacity of representation by means of a vector of probabilities in PBIL is minor 

who the one of a population of solutions in GA, therefore the convergence is faster. 
Search in exploration is sacrificed to have a higher rate of convergence. 

In order to apply the PBil algorithm it is necessary to give value to four parameters:  
population size, learning rate, probability of mutation and mutation rate. To the association 
problem the probability of mutation is set to zero with the purpose of accelerating the 
convergence of the algorithm.   
The main parameter that will affect the speed of convergence is the learning rate, whichever 
greater is its value, more quickly finalizes the search, losing, of course, quality in the 
solutions. The PBil algorithm originally was oriented to functions optimization, but has been 
efficient treating combinatorial optimization problems of complexity NP, in terms to find 
solutions of the same quality that GA needing smaller number of function evaluations. 
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2.1.3 CGA. The Compact Genetic Algorithm 
The cGA [8] simulates the performance of a canonical genetic algorithm with uniform 
crossover. It is the simplest EDA, and only needs a parameter, the population size that has 
the effect of a learning rate. 
As the authors of CGA suggest, this algorithm has an important additional utility, allows 
discriminating quickly when a problem is easy to be treated by means of evolutionary 
algorithms. 

3. Adjustment of the EDA parameters using KP0/1 problem 
In order to fit the parameters of each one of EDAs applied to tracking systems, we evaluated 
them using a theoretical combinatorial problem with similar complexity and well-known 
optimal solution. The objective for these theoretical experiments is two-fold: 
• Compare the number of function evaluations that needs each algorithm to obtain 

solutions of a given quality. This efficiency metric allows us choose the suitable 
algorithm for the real-time video association problem 

• Fit the parameters of each algorithm to obtain the best relation between the quality of 
solutions and speed of execution 

It has been taken three KP0/1 problems [10] with increasing difficulty (10, 20 and 40 
objects). These sizes correspond with the practical problem dealt since the codification of the 
association matrix will be, in the cases of higher-density also around 40. The size of the 
search space scales with 2n. For the three problems, the optimal solution is known and not 
exist correlation between the variables; this is the worst case. The knapsack 0/1 problem of 
(KP0/1) is a NP-complete combinatorial optimization problem and, for example, the 
difficulty to be solved was used to make the first algorithm of generalized public key 
encryption [11]. The knapsack 0/1 problem is defined as: 
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The following figures contain the comparison of performances by UMDA, PBIL, CGA and 
the canonical GA with uniform applied in this work. The number of evaluations of fitness 
necessary to obtain a certain probability of success has been plotted. An algorithm is 
successful when it finds the optimal solution and the success probability is calculated with 
the frequency of success in 50 executions with different random seeds. The parameters of 
the different algorithms are obtained by trail-and-error treating to diminish the number of 
fitness evaluations. 
The graphs show, for all the algorithms and problems, the exponential growth of the 
number of evaluations when it is wanted to reach great percentage of success. In the three 
KP0/1 the UMDA has obtained better results, it needs fewer evaluations than the rest to 
obtain solutions of the same quality. The PBIL has a behaviour similar to the UMDA treating  
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Fig. 2. Comparison of the number of fitness evaluations versus the probability of success of 
the EDAS and canonical GA to solve several KP0/1 of different complexity 

the simplest problems but it behaves worse than the canonical GA when it is applied to the 
most difficult problem. The CGA shows the worse behaviour, if for the two simpler 
problems has an intermediate behaviour between UMDA and the canonical GA, for the 
KP0/1 of 40 objects has instability respect to the parameter that represents the size of the 
population, N. 
In the following figure, the variation of the number of evaluations of fitness based on the 
difficulty of the problem when the percentage of success is the 100% has been plotted. 
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Fig. 3. Evolution of the number of evaluations of fitness based on the length of the problem. 

It is observed that the UMDA is the algorithm with smaller number of evaluations of fitness 
needs to reach the 100% of success. The behaviour of the canonical GA is remarkable, it 
scales an order of magnitude whenever the difficulty of the problem is duplicated, while 
this increase is greater for the rest of algorithms. However, for simpler problems the 
canonical GA needs almost two orders of magnitude more evaluations of fitness to obtain 
the same quality. 
As it has been previously indicated, the objective of this work is to solve the combinatorial 
optimization problem that appears in the association problem from blobs to tracks for real-
time video tracking. The analysis of the EDAs and canonical GA on KP0/1 has allowed us to 
discriminate the algorithm that presents greater potential of application and its parameters. 
These parameters are in Table 1 and will be used later to solve the association problem. In 
section 5, the results of these algorithms applied to the association problem will be 
presented. 
 

 Parameters that were applied in KP0/1 

 Length 10 Length 20 Length 40 

PBIL N=1 M=9 
LR=0.05 

N=1 M=20 
LR=0.05 

N=8 M=1000 
LR=0.05 

CGA N=50 N=200 N=20000 

UMDA N=1 M=9 N=8 M=50 N=8 M=250 

GA 
 

M=100 
Pmutation=0.01 
Pcrossover=0.9 
Elitism=20% 

M=200 
Pmutation=0.01 
Pcrossover=0.9 
Elitism=20% 

M=800 
Pmutation=0.01 
Pcrossover=0.9 
Elitism=20% 

Table 1. Values of the parameters of the EDAs and GA that allow to obtain a 100% of success 
in the problem of the KP0/1 
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4. Formulation of data association problem 
The data association problem, also known as motion correspondence in the case of video 
analysis, is the most important challenge in multi-target video tracking systems. The 
complexity of scenarios, expressed in the number of interacting targets, irregular motion, 
presence of background noise, etc., presents a collection of problems that must be solved to 
guarantee a robust performance and so reliable output with a certain level of accuracy and 
stability. 
Among alternative approaches, Bayesian inference methods have gained a high reputation 
for visual processing and estimation [12], [13], [14], due the potential to provide a solution as 
close to the theoretically optimal as possible. Closeness to theoretical optimum will depend 
on the computation capability to execute numeric approximations and also on the reliability 
of statistical models for target appearance, dynamics, likelihoods, a priori densities, etc. It 
usually becomes an intractable approach for most realistic situations and it is necessary the 
use of heuristic approaches and simplifications. 

4.1 Problem statement. Motion correspondence as a search 
The visual tracking problem involves an environment that changes with time [15]. The 
estimation of the number of objects in a scene, together with their instantaneous location, 
cinematic state and additional characteristics (shape, colour, identification, etc.) is the 
problem addressed by a visual tracker. The objects in the scene can be defined as a set of 
entities described by a set of characteristics that evolve in time (position, velocity, colour, 
shape, temperature, etc.). In this sense, environment could be defined in an instant as a set 
of objects, where each object is defined by a set of characteristics in this instant: 

 E[k]= {O1[t],…, ON[t]}  (3) 

So there are N[k] real objects moving in the covered area at time instant t[k]. 
The description of the objects is expressed in a vector state space, d

ix ℜ∈ . For instance a 
common simplified representation of objects in 2D camera plane contains position of object 
centroid, together with bounds (width and length) and their velocity and scale derivatives: 

t
i ]vhvwhwvyvxyx[x =  (d=8). 

In the case of visual sensor, the phase of image preprocessing acquires some characteristics 
of the objects (observation), perturbed by the measurement process. The acquisition process 
is related with the digital image acquisition and the detection process. The first one defines 
the resolution in pixels and frames by second of the sequence of captured images; the 
second one defines the objects in the captured image. In the case of visual sensor, observed 
characteristic are more complex than conventional sensors, for example: color (or gray 
level), the shape, the skeleton, the contour, etc. and the position is an estimation from the 
detected object (typically the centroid). We will consider in this work as preprocessing phase 
the background subtraction to detect moving objects in monocular images [12]. After 
background subtraction and thresholding, we have a binary image where a detected object 
is observed through a set of compact regions (blobs), where a blob is a set of adjacent binary 
detected pixels in this instant: 

 ]}k[b,],k[b{]k[Z i
M

i
1

i
i…=   (4) 
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where Mi is the number of blobs that are due to i-th object (unobservable). 
The problem is that both N[k] and i superindex in observations are hidden, they must be 
deduced from the data. The only observable amount is the global set of blobs appearing in 
the foreground binary image: Z[k]={b1[k],…bM[k]}. So, the basic problem in video data 
association is the re-connection of blobs to be used to update tracks, searching the collection 

of blobs corresponding to each track ],k[xi ]k[Zi . The final object characteristics result 
from the combination of the blob characteristics that belong to the object 
As mentioned in the introduction, target splitting and merging is a distinguishing problem 
in video data association with respect to other sensors. With other sensors such as radar, 
each acquired data, a plot, comes from a single object but, in visual sensor, acquired data, a 
blob, could be the result of several objects (merging), and several blobs can be originated by 
the same object (split). Blobs corresponding to separate objects can be merged when they 
come close together in the image, splitting again when they separate. The problem gets more 
complex since the image may contain false observations due to noise or target 
fragmentation, so that the total observations may be some arbitrarily large set of 
observations. This makes it difficult to provide unique track labels for different interacting 
objects, which is a fundamental capacity required for the usual applications of machine 
vision such as surveillance, scene analysis (sports), automatic annotation, etc. The problem 
would be aminorated by using a camera installed in a pole high enough so objects are 
viewed from near vertical geometry but this is often not possible in practical surveillance 
configurations (for instance, indoor scenes) 
A Bayesian framework to determine the best estimation, X[k], inferred from available 
measurements, Z[k], is the one targeted at obtaining the maximum a posteriori probability 
of estimated state, conditioned to the whole set of observations: 

 ])0[Z,],1k[Z],k[Z|]k[X(P
]k[X

maxarg]k[X̂ …−=   (5) 

Where ]k[X̂ denotes both the number of targets and their state in the scene at time instant 
t[k],  

]}k[x̂],...,k[x̂{]k[x̂]k[X̂
kkN...1 N1== , where di ]k[x̂ ℜ∈ , in our case d=8 as indicated 

above. Notice that objects forming state X[k] have a set structure instead of array, since the 
order in X[k]to represent the real objects is irrelevant. 
So a joint estimation problem appears about the number of objects, N[k], and their 
parameters, ].k[x̂i  A complete problem formulation for the multi-target joint estimation 
problem would take into account the different configurations in the number of objects and 
their characteristics (shape and motion state). The classical inference formulation applies the 
Bayes theorem to rearrange the problem in a recursive formulation: 

 
[ ] ]1k[dX])0[Z,],1k[Z|]1k[X(P])1k[X|]k[X(P])k[X|]k[Z(P

c
1
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where the integral in the joint problem would extend over the whole space of predicted 
state, P(X[k]|X[k-1]) considering both the number of objects and their corresponding states, 
and c is the normalization constant to guarantee the result is a probability density. In this 
formulation, and dropping time index for simplicity, P(Z|X) is the probability of observing 
a particular image Z given a certain current state X. It is the likelihood function and has a 
fundamental impact in the result. In our case we will particularize the observation process 
to the analysis of the binarized image resulting from the background subtraction and 
thresholding, so that 

 Z[k]={b1,…,bMk[k]}  (7) 

This multiple-target tracking problem can be split into two interdependent problems, data 
association (or motion correspondence) between measurements and objects, and state 
estimation, to update vectors ]}k[N,,1{j],k[x̂ j …∈  with the assigned measurements.  

Data association is the sequential decision process which takes, for each frame, the available 
measurements and assigns to the tracked targets up to that time instant. The assignment 
problem can be considered as part of the maximization of a posteriori likelihood of 
observations. So, if we consider a particular configuration of X[k] with N[k] tracks, its 
likelihood will depend on the sequential series of data assignments: 

 ])0[Z],0[A,...,2]-[kZ],1k[A1],-[kZ],k[A|]k[Z(P])k[X|]k[Z(P −=   (8) 

where the assignment matrix { }]k[a]k[A ij=  is defined as aij[k]=1 if blob bi[k] is assigned to 

track ]k[x̂ j ; and aij[k]=0 otherwise. In k-th frame there are M[k] blobs extracted to be 

assigned, b[k]={b1[k],…,bMk[k]}, and the objects tracked up to them (last assignment of blobs 
was at frame k-1) are: X[k-1]= {O1[k-1],…,ONk-1[k-1]}.  
The size of matrix A[k], (1+N[k])xM[k], changes with time, since i=1,…,M[k] represents the 
blobs extracted from the k-th frame, whose number depends on the variable effects 
mentioned above during the detection process. Furthermore, N[k] represents the objects in 
the scene, whose number may also dynamically change when objects appear and disappear 
in the scene. Special case j=0 is considered to represent assignment of blobs to “null track” at 
current time, which are used to initialize new objects or are discarded. 

5. Multi-blob data association with EDAs 
The association problem has been defined as a search over possible blob assignments. This 
problem could be defined as minimizing a heuristic function to evaluate blob assignments 
by an efficient algorithm (Estimation of Distribution Algorithm). The heuristic function 
takes a Bayesian approach to model the errors in observations. The formulation of data 
association as a minimization problem solved by a genetic technique is not a handicap with 
respect to the required operation in real time. A worst-case number of operations can be 
fixed and bound the time consumed by the algorithm, if we restrict the maximum number 
of evaluations. Then, given a certain population size, the algorithm will run a number of 
generations limited by this bound on the number of evaluations. The most important aspect 
is that the EDA should converge to acceptable solutions with these conditions of limited 
population size and number of generations. 
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5.1 Encoding and efficient search with EDA algorithms 
In the mathematical formulation defined in section 2, the association consists of finding the 
appropriate values for assignment matrix A, where element A(i, j) is 1 if blob i is assigned to 
object j and 0 in the opposite case. In order to be able to use the techniques of evolutionary 
algorithms, the matrix A is codified in a string of bits, being the size of matrix A NxM, with 
N the number of extracted blobs and M the number of objects in the scene. A first possibility 
for problem encoding was tried with a string of integer numbers representing the possible 
M objects to be assigned for each blob, including the “null” track 0, as shown in Figure 4: 
 

 
 
 

b1         b2            b3           b4                     bN 

Integer ranging in [0,1,…M]: log2(1+M) bits

 
Fig. 4. Simple encoding for blob assignment 

This encoding requires strings of Nlog2(1+M) bits and has the problem of constraining 
search to solutions in which each blob can belong to one object at most. This could be a 
problem in situations where images from different objects get overlapped and may leave 
some tracks unassigned and lost. 
Then, a direct encoding of A matrix was used for general solutions, where the positions in 
the string represent the assignations of blobs to tracks. With this codification, where 
individuals need N(1+M) bits, a blob can be assigned to several objects: 
 

 
 
 

b1    
 

b2  
 

b3     
 

b4     

    

     
bN     

T0     T1     T2    T3                  TM       

tracks 

blobs 

b1         b2            b3           b4                     bN 

1+M bits (whole row of A) 

 
Fig. 5. Direct encoding for whole A matrix 
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Finally, in order to allow and effective search, the initial individuals are not randomly 
generated but they are fixed to solutions in which each blob is assigned to the closest object. 
So, the search is performed over combinations starting from this solution in order to 
optimize the heuristic after changing any of this initial configuration. Besides, for the case of 
EDA algorithms, the vector probabilities are constrained to be zero for the case of very far 
pairs (IF dCentroid(i,j)>GATE_THRESHOLD0=> pij=0) and those blobs which fall in spatial 
gates of more than one track have a non-zero change probability. 

5.2 Description of the fitness function 
Fitness function supplies to the evolutionary algorithms with a score to evaluate the 
assignment of grouping blobs to active tracks. In this case, the potential assignments 
explored by EDA algorithms are qualified following the heuristic described in this section. 
The tracking system keeps information about the centroid position, rectangle bounds and 
velocity for each track by means of a Kalman filter updating a track state vector, ]k[x̂ i , 
adapted to the dynamics of interesting objects. Therefore, we are able to evaluate the 
similarity between the potential assignment explored by evolutionary algorithm and the 
prediction of target accordingly to Kalman filter in every frame. Moreover, the fitness 
function should consider those assignments that leave confirmed tracks with no updating 
blobs. 
Let [ ]1kOi +  be the set of blobs assigned to track j by an individual in evolutionary 
algorithm for k+1 frame. This set of blobs are represented by its bounding box, specifically 
by its centroid pixel coordinates, width and height ( e

jx , e
jy , e

jw  and e
jh ). They are those 

blobs corresponding to indexes i such that Aij[k+1]=1. Track j contains the prediction 
provided by Kalman filter, ],k|1k[x̂ j +  represented by its centroid pixel coordinates, width 
and height i ( u

jx , u
jx , u

jw  and u
jh ).  

Let jd be the normalized distance between the evolutionary proposal and predicted track j: 
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Let js be the normalized size similarity between the evolutionary proposal and predicted 

track j: 
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Let I  be the foreground image that we are processing. We define ),( yxI as true, if and 
only if the pixel (x,y) is in the bounding box of the evolutionary proposal for track j. We 
define the Density Ratio, jdr , of track j as: 
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The fitness function, Fi , of an assignment i that we have to minimize is: 
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where, M represents the number of tracks in the frame. So, we incorporate besides two 
penalization ratios to the fitness function, corresponding to the probabilities of false positive 
detection (PFA), and probabilities of true positive missing (PD): 
• ap (assignment penalization). A penalization value is added to the fitness function every 

time a blob is assigned to a distant track.  
• lt (lost track). A high value is added every time no blob is assigned to one track. 

6. Results 
In this section we present the comparison between EDA algorithms presented in this work 
and a benchmark algorithm based on a combination of Particle Filter [16], [17] and Mean 
Shift [18], [19] algorithms. 

6.1 Video data set definition 
The datasets used throughout this paper are employed with three different scenes.  
These datasets are from two different sources: the publicly available CVBASE dataset [2] 
and a DV camcorder. The datasets are quite diverse in their technical aspects and the quality 
of the image sequences radically differ from poor to excellent along with their pixel 
resolutions. 
The following will describe the 3 datasets to gain an understanding of its scene 
characteristics: 
• Maritime scenes (BOAT). The videos were recorded in an outdoor scenario using a DV 

videorecorder. The videos have a high quality with a resolution of 720x480 pixels with 
15 fps. The videos feature several boats in an outdoor environment lit by the sun. The 
videos are very interesting due to the complex segmentation of maritime scenes. The 
sea has continuous movement, which contributes to the creation of a great amount of 
noisy blobs. 

• Squash tournament (SQUASH). The videos are from the CVBASE dataset and were 
taken on a tournament of recreative players. The videos were recorded in S-VHS 
videorecorder, using a birds-eye view with wide angle lens. The videos were digitized 
to digital video format with 25 fps, resolution 384x576 and M-JPEG compression. The 
selected video is a zenithal record of two players playing squash. They are with close 
proximity to each other, similar modality of dress, slightly faster movements and 
constant crossings between players, which make for a challenging sequence. 

• Handball match (HANDBALL). The videos are also from the CVBASE dataset and 
have the same characteristics than the squash tournament sequences. Players do not 
leave the court during the match, there are constant crossings among players with 
occlusions and disocclusions and the number of objects (players) to track is quite high. 
These conditions make also for a challenging sequence. 
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6.2 Evaluation metric definition 
Before comparing the obtained results of algorithms used for visual tracking 
accomplishment, the first step is to determine the metric that allows making the 
comparisons of the algorithms behaviour. A specific quality measurement of the association 
has not been used and the global behaviour has been observed. In the analysis, a special 
emphasis in the speed of algorithms convergence is made in order to evaluate the 
application of the proposal development in real-time video tracking. The measures taken 
into account are: Tracks per Frame, Frames per Second and Time per Track. 
Measurement TPF (Tracks per Frame) is used to compare the behaviour of the tracking 
algorithms in terms of continuity of the tracks. An optimal tracker would have to obtain the 
value referred as “ideal”. When the obtained value is below to this “ideal” value, it means the 
tracker lost in the continuity of the tracks (merge effect) and, conversely, when it is over of 
“ideal” value, the tracker had an excess of tracks (split effect). The standard deviation of TPF 
allows discriminating between the behaviours with very similar averages but worse quality 
(greater deviation). FPS (Frames per Second) is the rate of processed images having applied 
the tracking algorithms; high values imply a capacity of greater processing. Column TPT 
(Time per Track) shows the time in milliseconds that the updating algorithm of tracks uses 
in the association logic, in this case the association is solved by EDAS and GA. The particles 
filter algorithm incorporates its own strategy of association. The rest of the time necessary to 
make the tracking (detection and filtrate) is common for all and therefore is not compared.  
Besides, in order to grasp the algorithms’ behaviour regarding convergence, bi-dimensional 
histograms with the number of evaluations necessary to obtain the solution and final fitness 
values are also presented. They have been computed depending on the size of combinatorial 
search space of data association hypotheses. This size is given, accordingly to encoding in 
section 4.4 and for each frame processed, by 2N(1+M), being N the number of blobs and M the 
number of active tracks. The relative frequencies are indicated with levels of grey: black is 
100%, white is 0%. It is expected that the size of search space makes more difficult the 
convergence, requiring more evaluations and/or converging to worse solutions. 

6.3 Results and discussion 
In the following tables the quality measurements of the EDAs, GA and particles filter 
applied to BOAT, SQUASH and HANDBALL sequences are presented. The parameters of 
the algorithms, size of the population, number of iterations, rate of variation, etc. have been 
set corresponding to the problem KP0/1 of length 20.  
Recording BOAT displays a scene in the sea with three objects that remain visible in all the 
frames. Table 2 shows the values of the quality parameters and standard deviations 
obtained for this scenario. 
 

 mean TPF 
(ideal=3) sd TPF FPS mean TPT 

(millisecond) sd TPT 

CGA 2.98 0.07 4.29 2.22 0.08 
UMDA 2.93 0.17 4.26 4.16 0.75 

PBIL 2.98 0.07 4.04 9.14 1.93 
MSPF 2.98 0.07 2.33 67.93 0.78 

GA 2.93 0.17 2.21 79.37 18.23 

Table 2. Measures of quality of the algorithms applied to BOAT  
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The results obtained for sequence BOAT show clearly the advantage of the EDAS on GA 
and particle filter. Observing the referring columns TPF, the quality of the tracking is the 
same for all the algorithms, very close to the ideal value. UMDA and GA are slightly less 
stable compared to the rest, but the difference is negligible. The speed that the EDAS solve 
the combinatorial problem of the association of blobs to tracks is quite superior (50%) to GA 
and particles filter. 
In the following test video, SQUASH, given the normal dynamics of game, there are many 
situations in which the players move very close and with abrupt movements, which 
suppose an increase of the complexity of the association problem. The results of the quality 
measures are in the following table. 
 

 mean TPF 
(ideal=2) sd TPF FPS mean TPT 

(millisecond) sd TPT 

CGA 1.88 0.24 14.22 0.78 0.15 
UMDA 1.87 0.25 14.40 1.04 0.18 

PBIL 1.89 0.23 12.31 4.02 1.48 
MSPF 1.90 0.24 5.74 53.22 2.86 

GA 1.87 0.26 6.64 37.65 13.58 

Table 3. Measures of quality of the algorithms applied to SQUASH 

The quality of the tracking has descended due to the increase in the complexity of the scene. 
The best quality is obtained with the particle filter but all the values are very close. The 
required time to process the scene continues being very advantageous for the EDAS, 
superior to the double that the time obtained with the particle filter. Again, have been used 
the parameters of the algorithms (see Table 1) that were fit when solving the problem of the 
KP0/1 of length 20. 
Finally we show the results on an extraordinarily complex scene. A zenithal camera records 
a handball match (HANDBALL). In the sequence, there are seen 14 players and 2 referees. 
Due to the great number of players the accumulations of several of them in small regions of 
the field are frequent. And the size of space search is in the best case, when only there is a 
blob to assign by track, of 214x14 = 2196 different hypotheses. Compared with the previous 
scenes this is 100 greater orders of magnitude. In this case, the parameters of the algorithms 
corresponding to the problem of the KP0/1 of length 40 have been applied. 
 

 mean TPF 
(ideal=16) sd TPF FPS mean TPT 

(millisecond) sd TPT 

CGA 10.77 1.10 0.81 109.59 9.78 
UMDA 7.35 1.01 0.31 1554.12 974.84 

PBIL 11.64 1.22 0.66 17.20 13.23 
MSPF 12.92 0.52 0.56 160.18 1.21 

GA 12.40 1.82 0.04 43202.27 9343.08 

Table 4. Measures of quality of the algorithms applied to HANDBALL 

In Table 4 it can be noticed that the reduction in the quality of the tracking is very high. The 
value obtained in FPS implies that these algorithms cannot be used in these conditions to 
make real-time video tracking.  
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7. Conclusions 
In this chapter, the association problem for real-time tracking in video was formulated as 
search in a hypotheses space. It is defined as a combinatorial problem, constraining the 
computational load to allow image processing in real time of the sequence of frames. 
Evolutionary Computation techniques have been applied for solving this search problem, in 
particular Estimation Distribution Algorithms (EDA) that shows an efficient computational 
behaviour for real-time problems. The authors have done an exhaustive analysis of EDAs 
algorithms using several KP0/1 problems. These experimentations help the authors to know 
the complexity degree of the association problem and to find out the most suitable 
parameters for real-time video tracking problem. 
From the parameters obtained in analyzing the KP0/1 problems, the author have been 
carried out a wide comparison among standard Genetic Algorithm, Particle Filtering based 
on Mean-Shift weight and several EDA algorithms: CGA, UMDA and PBIL. Three video 
recordings of different complexity and problematic characteristics have been used to 
analyze the algorithms performance. Results show the efficiency of EDA algorithms to solve 
the combinatorial problem in real time and the capacity to be applied in video tracking 
systems. 
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1. Introduction 
The proposal of this chapter is to explain the implementation of collective intelligent 
techniques to improve results in artificial societies and social simulation using diverse 
concepts such as argumentation, negotiation and reputation models to improve social 
simulation of artificial societies implementing dioramas, and multivariable analysis in 
different application domains for example Logistics. These techniques will be useful for 
answering diverse queries after gathering general information about a given topic. This kind 
of collective intelligence will be characterized by: ant colony, particle swarm optimization, 
and cultural algorithms, each one of these implementing diverse models or  agents for 
simulate a social behaviour. Intelligent agents are used to obtain information to take 
decisions that try to improve the heuristic optimization needed in different application and 
fields of knowledge. 
First, in section 1 of this paper, we approach different concepts related with Artificial 
Societies and Social Simulation using different strategies to analyze and model the necessary 
information to support the correct decisions of the evolving models. In other sections we 
explain the way to generate a specific behaviour with collective-intelligence techniques –ant 
colony (section 2), particle swarm optimization (section 3), and cultural algorithms (section 
4). In section 5 we apply this knowledge in diverse fields and application domains that 
needs a heuristic optimization and the more innovative perspectives of each technique. In 
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section 6 we analyse three cases of study: Logistics using a point of view of each one of these 
techniques (Ant Colony, Particle Swarm Optimization and Cultural Algorithms); Stratagems 
in an intelligent game board (Cultural Algorithms), and a Friendship Algorithm to 
demostrate the concept of Six Degrees of Separation in Societies of Memory-Alpha (Cultural 
Algorithms). Finally, in section 7 we provide our conclusions and our main future research 
in each technique. 

2. Social simulation: basic concepts. 
Social simulation is the modeling or simulation, usually with a computer, of social 
phenomena (e.g., cooperation, competition, markets, social networks dynamics, among 
others). A subset within social simulations are Agent Based Social Simulations (ABSS) which 
are an amalgam of computer simulations, agent-based modeling, and the social sciences. 
History and Development 
The birth of agent based model as a model for social systems was primarily brought by 
computer scientist (Reynolds, 1994). (Epstein and Axtell, 1996) developed the first large-
scale agent model, the Sugarscape, to simulate and explore the role of social phenomena 
such as seasonal migrations, pollution, sexual reproduction, combat, transmission of 
diseases, and even culture, more recently.  
Types of Simulation and Modeling 
Social simulation can refer to a general class of strategies for understanding social dynamics 
using computers to simulate social systems. Social simulation allows for a more systematic 
way of viewing the possibilities of outcomes. There are four major types of social 
simulation: 
1. system level simulation. 
2. agent based simulation. 
3. system level modeling. 
4. agent based modeling. 
A social simulation may fall within the rubric of computational sociology which is a recently 
developed branch of sociology that uses computation to analyze social phenomena. The 
basic premise of computational sociology is to take advantage of computer simulations in 
the construction of social theories. It involves the understanding of social agents, the 
interaction among these agents, and the effect of these interactions on the social aggregate. 
Although the subject matter and methodologies in social science differ from those in natural 
science or computer science, several of the approaches used in contemporary social 
simulation originated from fields such as physics and artificial intelligence. 
System Level Simulation 
System Level Simulation (SLS) is the oldest level of social simulation. System level 
simulation looks at the situation as a whole. This theoretical outlook on social situations 
uses a wide range of information to determine what should happen to society and its 
members if certain variables are present. Therefore, with specific variables presented, 
society and its members should have a certain response to the situation. Navigating through 
this theoretical simulation will allow researchers to develop educated ideas of what will 
happen under some specific variables (Chira et al, 2008). 
Agent Based Modeling 
Agent based modeling (ABM) is a system in which a collection of agents independently 
interact on networks. Each individual agent is responsible for different behaviors that result 
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in collective behaviors. These behaviors as a whole help to define the workings of the 
network. ABM focuses on human social interactions and how people work together and 
communicate with one another without having one, single "group mind". This essentially 
means that it tends to focus on the consequences of interactions between people (the agents) 
in a population. Researchers are better able to understand this type of modeling by 
modeling these dynamics on a smaller, more localized level. Essentially, ABM helps to 
better understand interactions between people (agents) who, in turn, influence one another 
(in response to these influences). Simple individual rules or actions can result in coherent 
group behavior. Changes in these individual acts can affect the collective group in any given 
population. 
Agent-based modeling is simply just an experimental tool for theoretical research. It enables 
one to deal with more complex individual behaviors, such as adaptation. Overall, through 
this type of modeling, the creator, or researcher, aims to model behavior of agents and the 
communication between them in order to better understand how these individual 
interactions impact an entire population. In essence, ABM is a way of modeling and 
understanding different global patterns. 
Current Research 
There are two current research projects that relate directly to modeling and agent-based 
simulation the following are listed below with a brief overview. 
• Agent based simulations of Market and Consumer Behavior, is another research group 

that is funded by the Unilever Corporate Research. The current research that is being 
conducted is investigating the usefulness of agent based simulations for modeling 
consumer behavior and to show the potential value and insights it can add to long-
established marketing methods. 

• Agent based modeling is most useful in providing a bridge between micro and macro 
levels, which is part of what sociology studies. Agent based models are most 
appropriate for studying processes that lack central coordination, including the 
emergence of institutions that, once established, impose order from the top down. The 
models focus on how simple and predictable local interactions generate familiar but 
highly detailed global patterns, such as emergence of norms and participation of 
collective action. (Macy & Willer, 2002) researched a recent survey of applications and 
found that there were two main problems with agent based modeling the self-
organization of social structure and the emergence of social order. Below is a brief 
description of each problem Macy and Willer believe there to be; 

1. "Emergent structure. In these models, agents change location or behavior in response to 
social influences or selection pressures. Agents may start out undifferentiated and then 
change location or behavior so as to avoid becoming different or isolated (or in some cases, 
overcrowded). Rather than producing homogeneity, however, these conformist decisions 
aggregate to produce global patterns of cultural differentiation, stratification, and 
hemophilic clustering in local networks. Other studies reverse the process, starting with a 
heterogeneous population and ending in convergence: the coordination, diffusion, and 
sudden collapse of norms, conventions, innovations, and technological standards." 
2. "Emergent social order. These studies show how egoistic adaptation can lead to successful 
collective action without either altruism or global (top down) imposition of control. A key 
finding across numerous studies is that the viability of trust, cooperation, and collective 
action depends decisively on the embeddedness of interaction." 
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These examples simply show the complexity of our environment and that agent based 
models are designed to explore the minimal conditions, the simplest set of assumptions 
about human behavior, required for a given social phenomenon to emerge at a higher level 
of organization (see Figure 1). 
 

 
Fig. 1. Social Simulation using agents in an environment related with a wedding. 

Researchers working in social simulation might respond that the competing theories from 
the social sciences are far simpler than those achieved through simulation and therefore 
suffer the aforementioned drawbacks much more strongly. Theories in social science tend to 
be linear models that are not dynamic and which are inferred from small laboratory 
experiments. The behavior of populations of agents under these models is rarely tested or 
verified against empirical observation. 

3. Behaviour in group intelligent techniques – ant colony. 
This section describes the principles of any Ant System (AS), a meta-heuristic algorithm 
based on the ant food-search metaphor. The description starts with the ant metaphor, which 
is a model of real ants. Then, it follows a discussion of how AS has evolved. The section 
ends with the explanation of ACS, the most common AS version. ACS Algorithm is the base 
of the logistic application explained in a later section. 

3.1 A metaphor of real ants  
The AS was inspired by collective behavior of certain real ants (forager ants). While they are 
traveling in search of food, they deposit a chemical substance on the traversed path. This 
substance, called pheromone, is detected with their antennae. The Pheromone 
communication is an effective way of coordinating the activities of these insects. For this 
reason, pheromone rapidly influences the behavior of the ants: they will tend to take those 
paths where there is a larger amount of pheromone.  
The behavior followed by real ants is modeled as a probabilistic process. Without any 
amount of pheromone, the ant explores the neighboring area in a totally random way. In 
presence of an amount of pheromone, the ant follows a path in a controlled random way. 
With crossed paths, the ant will follow the trail with the largest amount of pheromone with 
a higher probability. All ants deposit additional pheromone during the traveling, then the 
food-search process evolves with positive feedback. Since the pheromone evaporates, the 
non-used trails tend to disappear slowly, increasing the positive feedback effect. In this 
stochastic process, the best ant receives reward with the highest amount of pheromone, 
while the worst ant is punished with the lowest amount of pheromone. 
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3.2 Artificial ant colony 
The AS is inspired in the natural optimization process followed by real ants. The algorithm 
is a general frame than can be applied to the solution of many combinatorial optimization 
problems. The artificial society, formed by ants, repeats the food-search process. Each ant 
builds a solution to the optimization problem. The ants share a pheromone structure, which 
is a common memory (global information) that can be accessed and updated simultaneously.  
The AS is a multi-agent system where low level interactions between single ant-agents result 
in a complex behavior of the whole ant colony. Each ant-agent has incomplete information 
or insufficient skill to solve a problem. They need the whole colony to get the final objective. 
To optimize this kind of collaboration, there is not global control, data is decentralized, and the 
computation is asynchronous. Besides, the ant colonies exhibit an emergent behavior. This 
emergent conduct happens because they build their result in an incremental manner. As a 
consequence, the ant colonies are adaptive, complex and distributed multi-agent systems. The 
AS was originally proposed to solve the Traveling Salesman Problem (TSP), and the Quadratic 
Assignment Problem (QAP). Now exist a lot of applications like scheduling, machine learning, 
data mining (Ponce et al., 2009), and others. There are several variants of AS designed to solve 
specific problems or to extend the characteristics of the basic algorithm. The next paragraph 
describes the most important variants in order of appearance. Ant Colony Optimization 
(ACO) was introduced initially by Dorigo (Dorigo, 1991). ACO use two main characteristics: 
ηrs and τrs. The heuristic information ηrs is used to measure the predilection to travel between a 
pair of nodes (r,s). The trails of artificial pheromone τrs is used to compute the learned reference 
of traveling in a determined arc (r,s). It is formed by three algorithms: Ant-density, Ant-
quantity and Ant-Cycle. Ant-density and Ant-quantity use the update of pheromone trails in 
every step of the ants, while Ant-Cycle makes updates after a complete cycle of the ant. A 
study of the correct configuration of AS for solving TSP concludes that the main parameter is 
β, the relative importance of the heuristic information. The study establishes that the optimal 
number of ants is equivalent to the number of nodes of the problem. 
Gambardela and Dorigo (Gambardela, 1995) designed the Ant-Q algorithm, which is based 
on the principles of Q-learning. It was applied for solving the TSP and Asymmetric TSP 
(ATSP). Ant-Q uses a table of values Q to indicate how good a determined movement from 
node r to s is. It applies a rule to choose the next node to be visited and uses reinforcement 
learning to update Q with the best tour of the ants.  Max-Min Ant System algorithm 
(MMAS) was developed by Stützle and Hoose (Stützle, 1996). It uses the elements of AS. 
However, it modifies three aspects: updating rule, pheromone values, and the next 
movement.  The updating rule was modified to choose the best tour in every cycle, 
increasing the probability of early stagnation. Maximum and minimum limits for the 
pheromone trails were established. These limits avoid repeated movements: bounding the 
influence of the trail intensity, and leading to a higher degree of exploration. 
Other variant of AS, named ASrank, was developed by Bullnheimer, Hartl and Strauss. 
(Bullnheimer et al., 1997). All solutions are ranked according to their fitness. The amount of 
deposited pheromone is weighted for each solution, such that the best result deposits more 
pheromone than bad solutions. This algorithm was tested with TSP and VRP instances. The 
developed technique is based on the Distributed Q-Leaning algorithm (DQL).  

3.3 Ant Colony System (ACS) 
Dorigo and Gambardela (Dorigo & Gambardela, 1996) improved AS with an algorithm 
named Ant Colony System (ACS). It presents three main differences with regard to AS: 
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transition rule, global updating and local updating. The transition-state rule is modified to 
establish a balance between the exploration of new arcs and the priority exploitation of a 
problem. The global updating rule is applied only to the arcs of the best ant tour. A local 
updating of the pheromone is done while ants build a solution. ACS was applied to TSP and 
ATSP with the addition of a local search based on a 3-opt scheme. Figure 2 shows a general 
scheme of the ACS algorithm.  
 

 
Fig. 2. The ACS algorithm. 

It is well known that ACS is one of the best ant algorithms. ACS has the best performances 
and the majority of references (Asmar, 2005). This algorithm was adapted to solve the 
logistic problem approached in a section 6.1. 

4. Behaviour in group intelligent techniques – particle swarm optimization. 

The Particle Swarm Optimization (PSO) algorithm is a population-based optimization 
technique inspired by the motion of a bird flock (Kennedy, J. & Eberhart R., 1995). In the 
PSO model, every particle flies over a real valued n-dimensional space of decision variables 

 . Each particle keeps track of its position , velocity , and remembers the best position 
ever visited, PBest. The particle with the best PBest value is called the leader, and its position is 
called global best, GBest. The next particle's position is computed by adding a velocity term to 
its current position, as follows:  

 (1) 

The velocity term combines the local information of the particle with global information of 
the flock, in the following way. 

 (2) 

The equation above reflects the socially exchanged information. It resumes PSO three main 
features: distributed control, collective behavior, and local interaction with the environment 
(Eberhart et al., 1996). The second term is called the cognitive component, while the last 
term is called the social component. w is the inertia weight, and 1 and 2 are called 
acceleration coefficients. The inertia weight indicates how much of the previous motion we 

Ant_Colony_System ( )
Initialize Data Structures 
Do 
   For each ant: initialize its solution 
   Do 

         For each ant:  
           Pseudo-random-rule(ηrs,τrs)is applied to build a solution  
       Local-update(τrs) 
   Until all ants have completed their solutions 
   Global-update(τrs) Until stop criteria is reached 
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want to include in the new one. When the flock is split into several neighborhoods the 
particle's velocity is computed with respect to its neighbors. The best PBest value in the 
neighborhood is called the local best, LBest. 

 (3) 

Neighborhoods can be interconnected in many diferent ways, some of the most popular are 
shown in Fig. 3. The star topology is, in fact, one big neighborhood where every particle is 
connected to each other, thus enabling the computation of a global best. The ring topology 
allows neighborhoods therefore it is commonly used by the PSO with local best. 
PSO is a fast algorithm whose natural behavior is to converge to the best explored local 
optima. However, attainting flock's convergence to the global optimum with high 
probability implies certain adaptations (Garro, 2009). The approaches range from 
modifications to the main PSO equation, to the incorporation of reproduction operators. 
PSO algorithm has been extended in several directions; in a latter section we show a 
multiobjective optimization approach to solve a logistic problem, the vehicle routing 
problem with time windows. 
 

 
Fig. 3. Neighborhood structures for PSO 

5. Behaviour in group intelligent techniques – cultural algorithms. 
Cultural algorithms were developed by Robert G. Reynolds in 1994 as a complement to the 
evolutionary algorithms, this algorithms are bio-inspired in the Cultural Evolution of the 
Societies, and were focused mainly on genetic and natural selection concepts (Reynolds, 
1994). Cultural algorithms operate at two forms: (1) a micro-evolutionary form, which 
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consists of the genetic material that an offspring inherits from its parents (children, 
grandsons, greats-grandchild, etc), and (2) a macro-evolutionary level, which consists of the 
knowledge acquired by the individuals through generations (Culture). This knowledge is 
used to guide the behavior of the individuals that belong to a certain population. Figure 4 
illustrates the basic framework of a cultural algorithm. A cultural algorithm operate in two 
spaces: Population Space and Belief Space. The most of computational problems found at 
real World, do not have a definitive (final) solution (Desmond & Moore, 1995). Cultural 
Algorithms uses the culture like a vehicle to store accessible relevant information to the 
population's members during many generations, and were developed to model the 
evolution of the cultural component over time and to demonstrate how this learns and 
acquires knowledge.  
 

 
Fig. 4. Conceptual Diagram of Cultural Algorithms. 

The Population Space are evaluated with a performance function obj(), and an acceptance 
function accept() can help to determine which individuals are introduce in the Belief Space. 
Experiences of those chosen elites will be used to update the knowledge / beliefs of the 
Belief Space via function update(), this function represents the evolution of beliefs in the 
population. Next, the beliefs are used to influence the evolution of the population. New 
individuals are generated under the influence of beliefs in the time that were crates. The two 
feedback paths of information, one through the accept() and influence() functions, and the 
other through individual experience and the obj() function create a system of dual 
inheritance of both population and belief. The population component and the belief space 
interact with and support each other, in a manner analogous to the evolution of human 
culture (Wu & Hsiao,  2008).  
List of belief space categories 
Normative knowledge A collection of desirable value ranges for the individuals in the 
population eg. acceptable behavior for the agents in population.  
Domain specific knowledge Information about the problem domain where cultural 
algorithms are applied. 
Situational knowledge Specific examples of important events - eg. succesful/unsuccesful 
solutions  
Temporal knowledge History of the search space - eg. the temporal patterns of the searching 
process  
Spatial knowledge Information about the topography of the search space  
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6. Use of collective intelligence techniques in diverse heuristics optimization. 
The use of collective intelligence is found in different areas ranging from biology, sociology, 
and business to computer science. However, a common definition looks for the 
identification of certain “intelligence” derived from the efforts of joined entities. The 
aforementioned entities range from bacteria, animals, human to computer processes. 
Furthermore, the same definition can be applied, in a broad sense, to action selection and 
evolutionary robotics.  
Evolutionary Robotics employs a quasi-optimal approach to develop autonomous 
controllers for different kinds of robots. The use of genetic algorithms and neural networks 
are natural candidates, as the preferred methodology, for developing single evolved neural 
controllers. These controllers are the result of testing populations of adapted individuals 
during a refinement process through series of computer-program iterations. Next, pairs or 
groups of individuals can be evolved together. Following this approach a change in the 
evolution of one individual can be affected by the change of other related individuals in the 
group. The latter approach has been identified, as its biological counterpart, as co-evolution 
that can be cooperative or competitive. A cooperative strategy can be developed to achieve a 
common task (e.g. pushing objects, solving a common task), whereas in a competitive 
strategy individuals have to struggle to assimilate some scarce resources (e.g. prey and 
predator, securing of food stashes). In biology diffuse co-evolution has been referred to 
species evolving in response to a number of other species, which in turn are also evolving in 
response to a set of species. Consequently, the identification of collective intelligence is more 
evident when coevolving cooperative groups.  
The development of collective behavior in simulation can be achieved by simple scalable 
control systems as a form of decentralized control. Therefore, the work of (Kube, 1993) 
exhibited group behavior without the use of explicit communication. A more recent 
approach by (Marroco & Nolfi, 2007) set a collective task where a group of four robots 
developed the ability to reach two different target areas and to group in pairs at each 
different location. Elementary communication skills were evolved alongside the abilities to 
reach target areas. In this way, coordination is achieved through stigmergy; nevertheless 
more elaborated communication can be implemented (Mitri, 2006). On the whole, the 
individual ability to communicate may be one of the requirements for the development of 
collective intelligence.  
The evolutionary approach has been sufficient to solve problems were cooperation and 
communication skills are necessary for solving a particular task; in contrast communication 
arises as a deceptive feature within a competitive scenario. In this scenario a common setting 
is that of the prey and the predator where both individuals are competing for scoring points 
either for escaping or capturing each other. The experiment can be expanded to add more 
preys and predators. It is important to notice that the prey/predator sees the other as a 
source that needs to be secured/avoided making this an instance of the ‘action selection’ 
problem (Ochoa et al., 2008).  
The action selection problem is related, to the behavior-based approach, and particularly to 
decision-making when a module takes control of the available actuators until is completed 
or proves ineffective. In the vertebrate brain, at specific loci, specialized centers of selection 
can be identified. One of them are the basal ganglia, and recent works support the idea of 
these nuclei playing an important role in action selection (Prescott et al., 2006). The basal 
ganglia act as a relay station in the planning and the execution of movements (behavior); 
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hence gathering information from the cortex and motor cortex. The basal ganglia are able to 
mediate cognitive and muscular processes. Not only the basal ganglia serves as an 
important center of action selection; in cooperation with the cerebellum and the sensory 
cerebrum, all them are able to veto muscular contraction by denying the motor areas 
sufficient activation.  In turn, these individual motor elements form more complex patterns, 
which can be thought as essential elements in the development of intelligence. The 
development of intrinsic basal ganglia circuitry with evolvable behavioral modules has 
already been implemented (Montes et al., 2007). Cooperative individuals not only require a 
society interaction, but the existence of an internal mechanism (e.g. the basal ganglia) that is 
able to mediate amongst various sensory processes. Nonetheless, these sensory processes 
need to be augmented when possible. Therefore, individuals need to build up unified 
internal perceptions based on their available sensory capabilities in order to produce 
specialized behavior. The work of (Montes et al., 2008) shows how non-standard avoidance 
can be achieved by extending sensory information through an evolutionary refinement.  
The emergence of collective intelligence based on the behavior-based approach requires 
stepping out from the modeling of selfish solitary individuals to social organisms. 
Therefore, we need to group our robots and expose them to numerous interactions to assure 
complex performances at the level of the group. Here, we have identified some common 
elements in collective robotics: cooperation, intelligence, communication skills, and the 
integration of sensory information with action selection. All of those accomplished with the 
use of the evolutionary robotics approach. As a consequence, we believe that we may 
contribute to the development of robotic collective intelligence by way of social experiments 
using the artificial evolutionary method.  

7. Cases of studies related to cultural algorithms 
Many applications inspired in evolving compute have a great value in Logistics. In this 
section, we present five in special to compare their contributions, the first is related with Ant 
Colony in Logistic (6.1 Subsection), another is the use of Particle Swarm Optimization in 
Logistics (6.2 Subsection), the last three are related with Cultural Algorithms (6.3 
Subsection) whih is used to improve Bin Packing Algorithm in a problem of Logistics, 
another is  focused in an interactive game board using the problem of negotiation for 
obtaining a best situation in the game; in the other way is showed the anlysis of a social 
networking represented with a Dyoram to determine Six degree of separation in a graph. 

7.1 Ant colony in logistic 
Many manufacturing companies need merchandise delivered with the minimum quantity of 
resources and in due time. An optimal solution to this logistic problem could save between 5 
to 20 % of the total cost of the products (Toth, 2002). However, this is a high-level complex 
problem. This type of word problem, named recently rich problem, includes several NP-hard 
sub-problems with multiple interrelated variants. To contribute to this area we approach the 
bottled-products distribution in a Mexican company. Our proposal includes an innovative 
ACS solution.  
The Routing-Scheduling-Loading Problem (RoSLoP) 
RoSLoP involves three tasks: routing, scheduling and loading. They are formulated with 
two well-known classical problems: Vehicle Routing Problem (VRP) and Bin Packing 
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Problem (BPP). The routing and scheduling tasks are defined through VRP, while the 
loading task is stated through BPP. Fig. 5 shows this formulation. 
 

 
 

Fig. 5. Routing-Scheduling-Loading Problem (RoSLoP)  

RoSLoP includes constrains not considered in VRP and BPP. Previous work approached 
separately at the most, three variants of BPP (Chan et al., 2005), and five variant of VRP 
(Pisinger, 2005). Commercial applications have incorporated up to eight variants of VRP 
without available scientific documentation (OR/MS, 2006). To overcome these limitations, 
our research tries simultaneously with eleven variants of VRP (Cruz et al., 2008) and five 
variants of BPP (Cruz et al., 2007).  
In order to generalize this problem, RoSLoP is formulated as follows: Given a set of 
customers with a demand to be satisfied, a set of depots that are able to supply them, and a 
set of BPP and VRP variants that restrict them, the routes, schedules and loads for vehicles 
needs to be designed. The Customer demands must be completely satisfied, so the total cost 
is minimized and the constraints are satisfied. 
Methodology of Solution 
The assignment of routes and schedules is solved by an ACS algorithm. Three elements 
complement this algorithm: an auto-adaptive constrained list; an initial search, implemented 
with the Nearest Neighborhood; and a local search, implemented with 3-opt and Cross-
Exchange. The loads are assigned by DiPro algorithm (Cruz et al., 2007). Fig. 6 shows the 
interaction between the components of ACS and DiPro.    
The ACS algorithm in Fig. 7 begins creating an initial solution (line 1). After, it creates an ant 
colony to minimize the number of vehicles used (lines 3 to 17). In this process, each ant 
builds a local solution sailing through the adjacent states of the problem. The election of the 
nodes is done through a pseudo-random selection rule (line 6 to 13). The local solution is 
compared with respect to the best global solution (line 18) and the updates are done (line 19-
20). The stop conditions of lines 17 and 21 are specified with respect to the number of 
iterations and time of execution respectively. A description of equation and techniques used 
by ACS are given below. 
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Fig. 6. ACS-DiPro: a solution Methodology of RoSLoP 
 

 
Fig. 7. The ACS algorithm for RoSLoP 

Pheromone Update: Global update of the pheromone trail for customers is done over the 
best solution. Eq. 4 evaporates the pheromone in all the edges used for the best ant; the 
evaporation rate is ρ∈[0,1]. It also adds a reward using the increment Δτrs, which is the 
inverse of the length of the best global solution. Local update (Eq. 5) is applied every time 
that one ant travels from node r to node s. It usesτ0, which is the inverse of the product of the 
length of the shortest global solution, and the number of visited nodes. Similar equations are 
used for the vehicle pheromone trail.   

 rsrsrs τρτρτ Δ+−← )1(  (4) 
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 0)1( ρττρτ +−← rsrs  (5) 

Heuristic Information for Customers: The Eq. 6 determines the heuristic information ηrs 
used in the customer selection. In this equation, 

rstΔ is the difference between the current 
time of node r and the arrival time to the node s, wss is the remaining size of the time 
window in s, sts is the service time in s, and tcrs is the travel cost from r to s.  

 ( ) 1)( −⋅+⋅Δ= rsssrsrs tcstwstη  (6) 

Heuristic Information for Vehicles: The Eq. 7 calculates the heuristic information vη used in 
the selection of the vehicles. In this equation, nvv is the quantity of trips required by the 
vehicle v to supply all the demands, 

vTM  is the average of the service time of a vehicle v, 

vTR  is the average travel time of a vehicle v, trv is the available service time of the vehicle v, 
ttv is the total service time of the vehicle v, and idprefv is the predilection-of-use grade of a 
vehicle v.  
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Pseudo-random selection rule: An ant k located in node r selects the next node s to move. 
The selection is made using the pseudo-random selection rule defined in Eq. 8. When a 
balancing condition is satisfied, the ant selects the best node exploiting the heuristic 
information and the trails of pheromone. Otherwise, a proportional random exploration is 
applied. In this equation, q0 is a parameter of balancing between exploitation and 
exploration, q is a random value in [0,1], β is the relative importance of the heuristic 
information, Nk(r) is the set of available nodes for r.  
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Auto-adaptive Constrained List (ACL): The ACL characterizes the instance graph into 
subsets that have similar conditions. First, a Minimum Spanning Tree (MST) is generated. 
When the variability of the cost associated to each path in MST is small, all the nodes form a 
single conglomerate. Otherwise, it forms conglomerates through a hierarchical grouping. 
The value of the heuristic information ηrs is modified with a factor, which is a ratio of the 
cardinality of the groups of r and s. 
Experimentation 
A sample of three real instances and its solution is shown in Table 1. The database contains 
312 instances classified by date order, and 356 products. The algorithm was coded in c# and 
set with 10 ants, 5 colonies, 40 generations, 0q  = 0.9; β  = 1; ρ  = 0.1. The results show that 
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ACS_DiPro uses an average of 5.66 vehicles. According with our industrial partner, it 
represents approximately an average saving of 11% in comparison with the manual 
solution. Besides, the algorithm execution takes 55.27 s. In contrast, a human expert is 
dedicated on doing this activity all working day. 
 

ACS_DiPro 
Instance ORDERS Distance  

Traveled
Vehicles  

Used 
Time

(s) 
13/02/2006 208 1980 5 55.57 
06/03/2006 224 1960 5 32.16 
09/03/2006 269 2570 6 76.18 

… … … … … 
Average 238.83 2245.16 5.66 55.27 

Table 1. Solution of real instances of RoSLoP 

7.2 Logistic application: solving the vehicle routing problem with time window using 
PSO. 
In transportation management, there is a requirement to provide goods and/or services 
from a supply point to various geographically dispersed points with significant economic 
implications. The vehicle routing problem (VRP), which was first introduced by (Dantzig & 
Ramser, 1959), is a well-known combinatorial optimization problem in the field of service 
operations management and logistics. 
The Vehicle Routing Problem concerns the transport of items between de-pots and 
customers by means of a fleet of vehicles. In the VRP, the decisions to be made define the 
order of the sequence of visits to the customers; they are a set of routes. A route departs 
from the depot and it is an ordered sequence of visits to be made by a vehicle to the 
customers, fulfiing their orders. A solution must be verified to be feasible, checking that it 
does not violate any constraint, such as the one stating that the sum of the demands of the 
visited vertices shall not exceed the vehicle capacity. 
 

 
Fig. 8. VRPTW example 
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The Vehicle Routing Problem (see Figure 8) with Time Windows (VRPTW), is a variant of 
the VRP which considers the available time window in which either customer has to be 
supplied. The VRPTW is commonly found in real world applications and is more realistic 
than the VRP that assumes the complete availability over time of the customers. 
Each customer requests a given amount of goods, which must be delivered or collected at 
the customer location. Time intervals during which the customer is served can be specific. 
These time windows can be single or multiple. A vehicle can not arrive later than a given 
time, but it can wait if arriving early. In such a case, the goal of the objective function is to 
minimize the distance travelled and the waiting time. (Salvelsberg, 1985) proved that even 
finding a feasible solution to the VRPTW when the number of vehicles is fid is itself a NP-
complete problem. An overview on the VRPTW formulation and approaches can be found 
in (Cordeau et al., 2002). 
VRPTW Formulation 
The VRPTW is represented by a set of identical vehicles denoted by K, and a directed graph 
G, which consist of a set of customers and a depot. The nodes 0 represents the depot. The set 
of n vertices denoting customers is denoted N. The arc set A denotes all possible connections 
between the nodes (including the node denoting depot). All routes start at node 0 and end at 
node 0. We associate a cost cij and a time tij with each arc (I,j)  A of the routing network. The 
travel time tij includes service time at customer i. Each vehicle has a capacity limit qk and 
each customer i, a demand di, i  N. Each customer i has a time window, [ai, bi], where ai and 
bi are the respective opening time and closing times of i. 
No vehicle may arrive past the closure of a given time window, bi. Although a vehicle may 
arrive early, it must wait until the start of service time ai is possible. It generates a waiting 
time wk for the route. Vehicles must also leave the depot within the depot time window [a0, 
b0] and must return before or, at time b0. For eliminating any unnecessary waiting time 
(Russell, 1995), we assume that all routes start just-in-time wk = 0, that is, we adjust the 
depot departure time of each vehicle tk = max(0, ai - t0i), i  N. 
Multi-Objective Optimization 
In Multi-Objective Optimization (MOO), two or more conflicting objectives contribute to the 
overall result. These objectives often affect one another in complex, nonlinear ways. The 
challenge is to find a set of values for them which yields an optimization of the overall 
problem at hand. 
A MOO problem is defined as follows: 

(9) 
 

    
  (10) 

 (11) 
 
 

The notion of “optimum" in MOO problems difers from that of a single function in global 
optimization. Having several objective functions the aim is to find good compromises, 
rather than a single solution.  
In 1896, Vilfredo Pareto, an Italian economist, introduced the concept of Pareto dominance 
(Pareto, 1896). A vector is preferred to (dominates) a vector if each parameter of  is no 
greater than the corresponding parameter of  and at least one parameter is less. 
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 (12) 

 
          

(13) 
 

Figure 9 shows an example of the Pareto dominance concept between solution vectors B and 
C;  due because B is less than C in the two objective functions f1 and f2. 
A useful concept in MOO, related with Pareto dominance, is the Pareto front. The Pareto 
front is composed by a set of non-dominated vectors. Figure 9 shows a comparison between 
two individuals of the Pareto Front, where A is less than B in objective function f1, but B is 
less than A in objective function f2; therefore both solution vectors are non-dominated. 
The Pareto front is particularly useful in engineering: by restricting attention to the set of 
solutions that are non-dominated, a designer can make tradeoffs within this set, rather than 
considering the full range of every parameter. 
 

 
Fig. 9. Pareto Front 
Multiobjective approaches to VRPTW 
The three objectives of the VRPTW were presented: total distance travelled, number of 
vehicles, and total waiting time. Many existing VRPTW techniques, however, are single 
objective-based heuristic methods that incorporate penalty functions, or combine the 
different criteria via a weighting function (Hasnah, 2002; Li & Lim, 2003). However, in the 
last five years, some hybrid algorithms have been proposed to solve the VRPTW as a MOO 
problem. (Tan, 2006), and (Ombuki, 2006), employed the travel distance and the number of 
vehicles to be minimized. (Chitty & Hernandez, 2004), tried to minimize the total mean 
transit time and the total variance in transit time. (Murata & Itai, 2005) consider to minimize 
the number of vehicles and the maximum routing time among the vehicles in order to 
minimize the active duration of the central depot. (Saadah et al., 2004), minimize the 
number of vehicles and the total distance travelled. This work proposes a hybrid particle 
swarm MOO algorithm that incorporates perturbation operators for keeping diversity in the 
evolutionary search and the concept of Pareto optimality for solving the VRPTW as a MOO 
problem with 3 objectives: minimize total travel distance, minimize number of vehicles and 
minimize total waiting time. 
Tackling Solomon's logistic problem with MO-PSO 
Our Multiobjective PSO (MO-PSO) uses a flock size of 100 members,applies a PSO with 
parameters c1 = 1 and c2 = 1, and w = U(0.5, 1). Total number of function evaluations is 
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1,000,000. A PC computer with Windows XP and C++ Builder Compiler, Pentium-4 
processor at 3.00GHz, 1.00 GB of RAM was used for all experiments. A well-know problem 
set proposed by (Solomon, 1987) is used to test our model. In these problems, the travel 
times are equal to the corresponding Euclidean distances. One problems is chosen for the 
experiment: problem C101 in dimensions 25. 
 

 
Fig. 10. Pareto front for problem C101 with 25 customers 

Figure 10 shows the Pareto front obtained by 10 runs of MO-PSO for the problem C101 with 
25 customers. The optimal route obtained by single objective approaches is marked with 
*SO in the figure. The Pareto front obtained by MO-PSO evidenced the huge waiting time 
accumulated by the optimal solution reported in the literature with single objective (total 
distance) approaches. The vector reports a total distance of 191.813620 units attained with 
only 3 cars, and a total waiting time of 2133.144826 units. As we mentioned above, in this 
problem, the travel times are equal to the corresponding Euclidean distances. Then, the total 
waiting time is at least 10 times greater than the total travel time performed for all routes. 
The total waiting time represents the 57.53% of the total available time (3708 units) of the 3 
vehicles, if the depot's window time [0; 1236] is taken as reference. Before, we explained that 
for eliminating any unnecessary waiting time, we assume that all routes start just-in-time wk 
= 0, that is, we adjust the depot departure time of each vehicle tk = max(0, ai - t0i), i  N. 
Therefore, there is no waiting times at the beginning of the route. 
Table 2 presents some solutions of the Pareto front found by MO-PSO for the problem C101 
with 25 costumers. For example, the solution vector (215.703725, 1584.387467, 4) presents a 
significant reduction in the total waiting time, but, the total distance and number of vehicles 
increased respect the solution vector (191.813620, 2133.144826, 3). The solution vector 
(359.85828, 963.12288, 3) has a waiting time of only 25.9% of the total available time (3708 
units) of the three vehicles. Finally, the last solution vector (748.901755, 100.252129,10) 
presents a reduction of 20 times the waiting time of the solution vector (191.813620, 
2133.144826, 3), and it represents the 2.7% of the total available time. Although this solution 
vector increase at least 3 times the total distance and the number of vehicles of the solution 
vector (191.813620, 2133.144826, 3). 



 New Achievements in Evolutionary Computation 

 

284 

Distance  Waiting Time  Vehicles 
191.813620  2133.144826        3 
197.256586  2077.701861        3 
215.703725  1584.387467        4 
276.183581  1293.765800        3 
359.858288  963.122881        3 
443.570466  744.983131        3 
511.430115  478.360000        4 
526.659555  466.430155        3 
589.610396  276.000750        4 
609.975206  199.124629        5 
673.520691  172.003649        6 
748.901755  100.252129      10 

Table 2. Points in the Pareto front of problem C101 with 25 customers 

The empirical results show that reducing the total distance often results in an increment of 
the total waiting time and vice versa. This happens when two customers that are 
geographically close may not necessarily be close from the temporal point of view. For the 3 
dimensions of the problem C101, the total waiting time is over 50% of the available time of 
all vehicles occupied in each solution. In real-world problems, this levels of waiting times 
are not conforming to standard usage. Thereby, placing more emphasis on the distance 
travelled will often result in unnecessary waiting time. 

7.3 Cultural algorithms to improve problems of logistics and combinatorial 
optimization. 
Different problems related with Combinatorial problem son explained in this section, the 
first is related with Logistics in special with the Bin Packing Problem, the second with the 
concept of Negotiation in many societies and finally the analysis of six degree of separation 
in a Social Networking each one implement different strategies to improve the problem and 
using from different point of view Culturaal Algorithms (CAs). 
In the fist problem CAs relies on a communication protocol that makes possible to gain 
access to the belief space. In relation with the evolutionary component of the cultural 
algorithm, either a Genetic or an Evolutionary Programming algorithm can be 
indistinctively used.  The cultural algorithm operates at two different levels by means of 
inheritance: at the belief space at a macro-evolutive manner, whereas at a micro-evolutive 
sense at the very own population space. Once certain beliefs are acknowledged, this ‘new 
knowledge’ are assimilated by the population and passed to the belief space (Ochoa, 2008).  
As a consequence, having an impact on the development of generation of new individuals 
through posterior epochs.  
The use of five particular kinds of knowledge is employed by the cultural algorithm to find, 
in the search space, a possible solution for a specific problem. This knowledge can be 
identified as: normative knowledge (acceptable behavior), circumstantial knowledge 
(successful and disastrous experiences), domain knowledge (objects and their relation in a 
given domain), historical knowledge (timed behavioral patterns), and topographically 
knowledge (spatial behavioral patterns) (Reynolds et al., 2005). The implementation of the 
cultural algorithm was carried out in a standard manner as shown in figure 11. 
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Begin 
  Generate a random initial population. 
  Calculate the fitness of the initial population. 
  Repeat 
    Apply to the entire population mutation to create offspring. 
    Evaluate each descendant  Select by 7 tournament  
    (usually probabilistic) individuals who survive. 
  Until a stopping condition is satisfied. 
End  
Fig. 11. Pseudocode for a standard cultural algorithm. 

The main contribution of the cultural algorithm to the evolutionary methods is the use of a 
belief space, and its cultural influence in the population for finding adequate solutions for 
problems that employ this knowledge space. 
Implementation 
The prototype is a hybrid intelligent system developed in Matlab 7.6.0, using cultural 
algorithms.  We started by measuring available free space in a standard distribution vehicle. 
Also we measured the various presentations in cubic centimeters and their volume in liters.  
We also took into account the demand of the different available presentations, in order to 
determine the income utility. 
 

PRODUCT CAPACITY DEMAND 
PERCENTAGE VOLUME UTILITY 

1 20 liters 45 % 36500cm3 $ 10.00 MXP 
2 1.5 liters 15 % 26731cm3 $ 26.50 MXP 
3 1    liter 15 % 18435cm3 $ 21.60 MXP 
4 0.500 liters 25 % 18177cm3 $ 38.50 MXP 

Table 3. Description of the product. 

Once the measurements were made, it was necessary to create an algorithm capable of 
finding the right selection, in terms of the freight, to optimize income utility and reduce 
costs of transportation (equation 14).  Then the population and the belief space were 
initialized. The demand of the product is calculated based on their volume and income 
utility (Table 3). Next, the initial population is evaluated based on the restrictions shown in 
the same table.  

Max r2m2 z = r1m1 + + + rnmn ... 

 V2m2 subject to v1m1 + + + ... vnmn <= V  (14)  

m1, m2 .. mn> = 0 and integer 

V = 1138425cm3  
where:  
r: Value per unit.  
v: Volume of each unit.  
m: are the units of each product type.  
V: Maximum capacity in volume.  
Any violation of the restrictions will be penalized in such a way that only the best 
combinations will be obtained.  As a result, an average result is obtained and the best 
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individuals are able to influence the next generation based on average individuals.  The 
resultant epoch is a proposed solution for the problem, the halt condition is reached when 
seven consecutive epochs reach the same result. The result (Time) is the proposed solution, 
the condition of unemployment is from the recurrence of 7 times without change, ie = or> to 
the previous ones. 
Results  
Our initial results are based in a cultural algorithm with an initial population of one 
hundred individuals. Also, a belief space was created with the same number of individuals. 
The system was initialized with this population and belief space, and then Variation 
Operators were applied. The system was iterated until the halt condition was reached 
producing a nearly optimal solution. The program was used to determine a proper 
combination of the truckload to maximize profits. The selection of the truckload was based 
on the volumes of the various water containers and the freight capacity of the truck. In table 
4 we observe that after the epoch fifteen the algorithm found a steady solution after eight 
epochs without improvement.  
 

CAPACITY 20 ltrs 1.5 ltrs 1 liter 0.500 ltrs 
Quantity 16 6 6 9 

UTILITY $848.00 MXP 

Table 4. Results obtained. 

A comparison with the Simplex Method reveals that still this method performs better at this 
stage in the implementation of our cultural algorithm. In table 5 we notice the maximum 
utility suggested by following this approach is $771.00 MXP, which is $ 77.00 MXP less than 
in our algorithm.  
 

 
Table 5. Results using the Simplex Method. 

As a result of our research we develop a hybrid intelligent system that employs a cultural 
algorithm with artificial evolution for the optimization of space in the delivery of purified 
water. Here we demonstrated that is feasible to use a cultural algorithm in problems such as 
the one described here. Our main contribution resides in a real application of the cultural 
algorithm, which few years ago exist only at the theoretical level. 
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In the second problem, we focus our attention on a practical problem adapted from the 
related literature within the Modelling Societies, “the negotiation toward a common well-
being” for a set of societies: to find a safe place (a place where attacks don't exist) in an 
unknown place, inside a hostile environment with unknown dimensions and populated by 
attackers in unknown locations.  
This type of optimization problem can be represented by a two-dimensional matrix, called 
“dimension”, like is shown in the Figure 12, where A represents the group of societies, M 
and B the Goal and the attackers (both unknown for the societies) respectively, and the 
numbers in the dimension represent the experimentation cost for each space. The objective 
of the cultural algorithm is to find the goal in the minimum number of steps while the 
spaces are sorted where “attacks” can exist, characterized by penalties of anxiety and 
uneasiness.  
The solution to this problem will be given by a sequence of agents' generations, denoted as 
“community.” The agents can only know the adjacent spaces to them, like in the colonies 
carried out by a society that only knows finite distances. The group of spaces around the 
agent is denominated “quadrant.” From the agent's point of view, this optimization problem 
is absolutely complex, because we don't know the location of the goal – or if some exists – 
and it cannot see the world beyond its quadrant. Besides doesn't have any previous heuristic 
to try to improve the optimization. For better understanding of the selected cultural 
algorithm used to solve the optimization problem, now we introduce some basic concepts 
and representations of the artificial culture related to this problem. These representations are 
abstraction levels located between (the unknown part of the agent), the domain problem 
(dimension) and the agents. In the algorithm of cultural change, the space of  
beliefs (beliefspace) by means of the best paradigm (BestParadigm) are set to zero, 
representing the fact that the culture increases the quantity of pleasure associated with such 
spaces, giving an incentive to the behavior associated with the best paradigm 
(BestParadigm). 
Agents 
The agents are the actors those that will be able to experience each space in the dimension to 
what Freud refers as the “principle of satisfaction”,  according to this, the agent will be able 
to select the spaces with the lower experimentation cost. 
Paradigm 
The paradigm is the agents’ personal representation for the space of beliefs (beliefspace) or 
its personal interpretation of the cultural references. According to Gessler, this is the agent’s 
cognition and its private vision of the cultural interpretation of the World. The paradigm 
could represent the best solution for the problem denoted as the best paradigm 
(BestParadigm). 
Space of beliefs (Beliefspace) 
The space of beliefs is the collective representation of the real World. In other words, this is 
the world as it is interpreted by one culture of the community, where the agents find the 
way to interact and moral values. 
Dimension  
The dimension is the real world, which never can be entirely known by the agent. This 
contains the experimentation cost and on which the agents are able to live when the 
optimization is improved. 
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Exploration 
The agents belonging to one community search inside the dimension for the most 
appropriated place to be developed (goal). The obtained solution for the agents whom find 
the goal in the lesser number of steps could be considered as the community “model”, or the 
best paradigm (BestParadigm). According Geertz, this model or ideology is a “diagram of 
the psychological and social processes”. The culture could then try to lead the behavior of 
the new generations of agents by means of this best solution. The best solution for the 
optimization problem will be given by the agent’s sequence of movements that find the 
totality of the optimum number of steps. Each agent in the community is leaded by one 
function that allows it to select the spaces with the lower quantity of anxiety.  It can be 
observed that the satisfaction principle does not affect the strategy for the global resolution 
of the problem at collective level (culture). To the contrary, this links the agent with an 
autonomous entity. The culture controls the behavior to be adopted as model, creating a 
strategy of global action –an ideology- regarding the given problem domain. 
The agent selects the cell with the minimum anxiety, as the indicated for the space of beliefs 
(Beliefspace) adding to this the cultural value, as: 

 beliefspace (x) = beliefspace (x) + dimension (x) (15) 

Where x is a set of spaces in the dimension 
In this research the functions represent the agent-culture interaction and are selected 
according with the adopted problem.  
Therefore, we cannot try to establish a mathematical model of how the cultural process 
occurs in the real world. Adopting a random function as was shown previously to explain 
how we insert, into the process, a system of multiple interactions between the agent and the 
culture. We try to analyze other mathematical representations in our future work.  
 

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 B 3 1 1 1
1 B B B 1 1 1
1 B 1 1 1 1 1
1 1 1 2 1 M 1
1 1 A 1 1 1 1

Fig. 12. Representation of the Dimension in a game board 
Cultural Algorithms Simulator 
To prove and validate the theoretical concepts previously presented, we developed a 
cultural algorithm simulator (Baharastar). Initially our intention was only to create an 
environment able to carry out analysis and experiments. When cultural algorithms are used, 
it becomes more difficult of understanding the peculiarities proposed for each solution. 
Each time that the system has a precise answer, the obtained solution can hardly being 
duplicated exactly. This property of the evolutionary algorithms in general and of the 
cultural algorithms in particular, has been little explored or discussed in the literature. The 
creation of systems with an individuality or “soul”, are our contribution in the area. For 
such purpose, we select 27 societies described in (Memory Alpha, 2009) and we characterize 
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their behavior using seven base attributes (agility, ability to fight, intelligence, forces, 
stamina, speed and emotional control), those which allowed describe as well to the society 
as to the individual.  
The development of Baharastar is based on our desire of sharing an intuitive understanding 
about the treatment for a new class of systems, individuals able to possess unexpected 
creativity, typical characteristic of living entities. Baharastar is shown in the figure 10, the 
user has the possibility to choose the starting point and the goal to reach, joined to the places 
where one can receive an attack by part of the enemy, and the quantity of anxiety associated 
to each space of the dimension where the societies reside in (agents' communities). Our 
prototype was developed using JBuilder X platform (see Figure 14). 
Experiments 
We describe the developed experiments using Baharastar which to contribute in the sense of 
making evident the importance of the creation of a new methodology to prove and to 
analyze the obtained results. This was not a trivial task, considering the diversity of 
behaviors of the provided solutions by Baharastar because it resembles more than a 
descriptive anthropology than a simple software test. In the first experiment, we compared 
the performance of 27 communities of 50 agents, and on the other hand 27 communities of 
500 agents each one. The associated points to the beginning and goal are shown in the figure 
13. The optimal number of steps from the beginning to the goal is 12.  
 

 
Fig. 13. Evaluation of a optimization problem using Baharastar 

One of the most interesting characteristics observed in this experiment is the diversity of 
cultural patterns established for each community. For the solutions with the same number of 
steps the provided result for the “beliefspace” is entirely different. The structured scenarios 
associated to the agents cannot be reproduced in general due they belong to a given instant 
in the time and space. They represent a unique, precise and innovative form of adaptive 
behavior which solves a computational problem followed by a complex change of 
relationships. The generated configurations can be metaphorically related to the knowledge 
of the community behavior regarding to an optimization problem (to make alliances, to 
defend from a possible invasion), or a tradition with which to emerge from the experience 
and with which to begin a dynamics of the process. Comparing the 50 agents of the first 
community regarding the 500 agents community, this last obtained a better performance in 
terms of the average number of steps from the beginning to the goal (13.05 versus 14.30), as 
well as a smaller standard deviation (1.96 versus 2.64). They also had a greater average 
number of changes in the paradigm (5.85 versus 4.25), which indicates that even the “less 
negotiating” generations, that explored less interesting parts of the dimension, could 
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optimize their search to achieve better results. In the second experiment, we consider the 
same scenario for the experiment one, except that after having obtained a solution from a 
community of 50 agents, we place five near spaces to the goal and we begin with a new 
community of 500 agents. The new community was informed of the previous cultural 
configurations but should take into account the new scenario. The comparison among both 
solutions is not immediate, from the point of view that try to solve different problems.  In 
this experiment, it was surprising to see initially how the community of 500 agents uses the 
solution offered by the 50 agents, whenever these solutions were close the optimal grade, 
instead of finding entirely complete new solutions. These results make evident the 
conservation of a global action strategy which regulates the agents. This can be compared 
metaphorically with the concept of culture mentioned in the introduction (Suarent & Ochoa 
et al., 2008).  
 

 
Fig. 14. Developed tool called Baharastar. 

In the third Combinatorial problem, we focused our attention on an adapted practical 
problem of the Literature related to the Society Modelling, "the friendship relationships" of a 
set of societies (127 societies represented by one issue – 57 Males & 70 Females) 
characterized in (Memory Alpha, 2009). The solution to this problem will be given by a 
sequence of generations of agents, denoted like "community". The agents can only select a 
set of possible friends based on previous behaviors of theirs societies (Beliefspaces). The 
ratings in Belief space are normalized associated to popularity of a friend (a society which 
has weighting qualities), this potential friend receive 12 points, the next one 10, and then 8, 
7, 6, 5, 4, 3, 2 and 1 (the graph is built using these relations). This allows each person 
(society) voting to give positive ratings to ten other people (societies). Each individual 
(society) cannot vote for itself. The order in which the people (societies) generate points is 
randomly drawn before the beliefs space of each society starts. After their obtained a group 
of friends, the graph drawn this friendship links, finally the diorama is built. Results are 
puts in a scoreboard society by society and represented as an adjacency matrix which is 
analyzed for determining six degrees of separation, in the same order in which societies 
established friendship, and ranked according to their aggregate score. 
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The dynamics of social relationship is a highly complex field to study. Even though it can be 
found many literature regarding friendship networks, weak links / acquaintances, 
relationship evolution and so on, we are still far from understanding all the process 
involved. Social research has shown that people use numerous criteria when they consider 
the possibility of turning an acquaintance into a friend. But this research considers only two: 
cultural and technological characteristics of people (society) that determine the emergence 
and evolution of friendship. After studying the theory available, we have decided to use 
“Six degrees of separation” in order to model the friendship dynamics and determine the 
concept of popularity. This principle assesses that the more similar cluster formed by several 
people are, the stronger their chances of becoming a group of friends. Thus, we attempt to 
model the processes in which people of different societies turn to be acquaintances, those 
turn into friends, and some friends into couples, and some couples in a group of friends 
(more of 4). Select a friend is among the most personal of human choices, and thus it is not 
surprising that friendship groups tend toward cultural homogeneity. People with the same 
preferences usually associate with other similar persons, in our case people represented 
different societies from different quadrants select people with interesting features and 
similar profiles to become theirs friends with base in its own preferences.  
A preliminary step to constructing a friendship modeling is adequate the relationships of 
people as a graph. A graph (or network) G is defined by a set of N vertices (or nodes) V ={v1, 
v2,...,vN} and a set of  L edges (or links), E ={e1, e2, ...,eL}, linking the nodes. Two nodes are 
linked when they satisfy a given condition, such as two persons participating in the same 
reaction in a social network. The graph definition does not imply that all nodes must be 
connected in a single component (friendship relation). A connected component in a graph is 
formed by a set of elements so that there is at least one path connecting any two of them. 
Additionally, graphs can also be weighted when links have values according to a certain 
property. This is the case for social networking, where weights indicate the strength and 
direction of regulatory interactions. Although graphs are usually represented as a plot of 
nodes and connecting edges, they can also be defined by means of the so-called adjacency 
matrix, i.e., an array A of NxN elements aij, where aij=1 if vi links to vj and zero otherwise. 
Figure 15 summarizes the different ways of representing a graph. 
 

 
Fig. 15. Different ways of representation for a directed and unweighted graph. Left: 
Adjacency matrix (A). Centre: Drawn graph. Right: List of pairs (edge list). The triangle 
motif (in dashed box) is indicated for the three representations. The friendship couple 
concept is represented in the vertex 5 with 1. Some examples of k, C and b values: for v3, 
k3=5, C3=0, b3=0.69; v8, k8=3, C8=0.33, b8=0.36; v10, k10=2, C10=1,b10=0. Whit all this 
fundaments is possible determine that exists the concept of Six degrees of separation in a Social 
Networking. 
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Six degrees of separation (also referred to as the "Human Web") refers to the idea that, if a 
person is one step away from each person they know and two steps away from each person 
who is known by one of the people they know, then everyone is no more than six "steps" 
away from each person on Earth. The easier way to understand this is that person A only 
needs a maximum of five people in between to connect to person B. (Supposing person A 
and B don't know each other, see right side of Figure 17). 
Experiments 
We simulated by means of the developed tool the expectations that propagation of 
friendship and interests of obtain a friend with specific features (see Figure 16). One of the 
observed most interesting characteristics in this experiment were the diversity of the 
cultural patterns established by each community because the selection of different attributes 
in a potential friend: Musical ability, Logical ability, Understanding emotion, Creativity, 
Narrative ability, spatial awareness & Physical ability. The structured scenes associated the 
agents cannot be reproduced in general, so that the time and space belong to a given 
moment. They represent a unique form, needs and innovator of adaptive behavior which 
solves a followed computational problem of a complex change of relations. Using Cultural 
Algorithms implementing with agents is possible simulate the behavior of many people in the 
selection of a group of friends and determinate whom people support this social networking.  
 

 
Fig. 16. Individual features of an element and classification of friendship preferences of a 
sample of societies (127 societies) obtained with Cultural Algorithms. 

We first observe that valued friendship (support in troubles related with financial, cultural 
or energy supplies situations are considered) always plays a very significant role, which 
should of course not be surprising. Hidden patterns observed in the agents are related with 
linguistic and cultural distances, and the expectative of selection of a friend whit specific 
attributes. The nodes with more value in their degree are considered more popular and 
support the social networking. To get some insight, we run 100 regressions on 100 random 
samples of half the number of observations, and count the number of times each parameter 
affect the graph built. Kelemane Society was selected as the most popular by the majority of 
societies because the attributes offered by it are adequates for others. In Figure 17 is shown 
the seven societies whom demonstrate the concept of Six degrees of separation. 

8. Conclusions. 
Evolving Compute offer a powerful alternative for optimization problems including 
Logistics, a real problem in our times. Nowadays all the societies try to improve Intelligent 
Systems of Logistics. 
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Fig. 17. Diorama obtained with Cultural Algorithms which show the clusters of preferences 
to become friendships, and an example of six degrees of separation. 

Many approaches exist to improve the solution of a real problem using ACs System 
algorithm, which builds solutions of good quality in a short time. This shows the viability of 
the development of complex applications based on collaborative intelligent techniques. 
Specifically, in the logistic of companies which need to distribute their products to obtain 
significant savings in transportation. This will allow companies to increase their utilities and 
offer their products in smaller prices.  
PSO studies the VRPTW as a tri-objective optimization problem. Specifically, the three 
dimensions of the problem to be optimized are considered to be separate dimensions of a 
multi-objective search space: total distance travelled, total cumulated waiting time and 
number of vehicles engaged. There are a number of advantages in using this MO-PSO 
model to solve the VRPTW. First, by treating the number of vehicles, total distance, and total 
waiting time as separate entities, search bias is not introduced. Second, there is a strong 
philosophical case to be made for treating the VRPTW as a MOO problem. It is not 
necessary to numerically reconcile these problem characteristics with each another. In other 
words, we do not specify that either the number of vehicles or the total distance travelled 
take priority. 
CAs provide a comprehensible landscape of the cultural phenomenon. This technology 
leads to the possibility of an experimental knowledge discovering, created by the 
community of agents for a given application domain. How much this knowledge is 
cognitive for the community of agents is a topic for a future work. The answer can be similar 
to the involved in the hard work of communication between two different cultures. The 
cultural algorithms offer a long-range alternative for the problems of optimization and 
redistribution of clusters. For that reason, this technique provides a comprehensible 
panorama of the cultural phenomenon represented (Ochoa, 2007).  
Logistics requiere of the solution propose by many evolving compute techniques (Ant 
Colony, PSO, and Cultural Algorithms) proportioned knowledge by obtain the best solution 
in the search space. There are an important number of questions that deserve additional 
research (Mendoza et al., 2009).  
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1. Introduction    
Intelligent heuristic optimization methods have increasingly attracted the attentions and 
interests of many scholars in recent years. Such as genetic algorithm, ant colony algorithm, 
particle swarm optimization, simulated annealing, etc.. They have become effective tools to 
solve the TSP and other NP-hard combinatorial optimization problems. The particle swarm 
optimization (PSO) algorithm is a population-based evolutionary algorithm which was 
proposed by Eberhart and Kennedy in 1995 (Eberhart & Kennedy, 1995). The PSO simulates 
the behaviors of bird flocking. Suppose the following scenario: a group of birds are 
randomly searching food in an area. There is only one piece of food in the area being 
searched. No bird knows where the food is. But they know how far the food is in each 
iteration. So what’s the best strategy to find the food? An effective one is to follow the birds 
which are nearest to the food. The PSO firstly generates a random initial population, the 
population contains numbers of particles, each particle represents a potential solution of 
system, each particle is represented by three indexes: position, velocity, fitness. Firstly 
endows each particle a random velocity, in flight, it dynamically adjusts the velocity and 
position of particles through their own flight experience (personal best position), as well as 
their companions’ (global best position). The evolutions of particles have a clear direction, 
the whole group will fly to the search region with higher fitness through continuous 
learning and updating. This process will be repeated until reach the default maximum 
iterations or the predetermined minimum fitness. The PSO is therefore in essence a fitness-
based and group-based global optimization algorithm, whose advantage lies in the 
simplicity of algorithm, easy implementing, fast convergence and less parameters. Presently, 
the PSO has been widely applied in function optimization, neural network training, pattern 
classification, fuzzy system control and other applications. Whereas, like other intelligent 
optimization algorithms, the PSO may occur the phenomenon that particle oscillates in the 
vicinity of optimal solution during searching in the search space, therefore the entire particle 
swarm performs a strong "convergence", and it is easily trapped in local minimum points, 
which makes the swarm lose diversity. Thus it has the weakness of solving complex 
problems, and it is difficult to obtain a more accurate solution in the late evolution. Many 
scholars proposed some improved algorithms (Yuan et al., 2007; Xu et al., 2008; Lovbjerg, 
2001), which improve the search capabilities of the elementary PSO in different aspects.  
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Bionics appeared in the mid 50's in 20th century, people were inspired from the mechanism 
of organic evolution, and put forward many new methods to solve complex optimization 
problems. In these methods, the evolutionary computation including evolution strategies, 
evolutionary programming, and genetic algorithms is the most remarkable. With people's 
research to biological group behavior and bio-social, algorithms based on swarm 
intelligence theory have appeared including Ant Colony Optimization (ACO). Since the Ant 
System (AS) which is the first algorithm in line with the ACO framework was put forward, 
the researchers have begun their attempts to improve the design. The first one is Elitist 
Strategy for Ant System (EAS). The EAS mainly gives special pheromone deposit to the 
artificial ants, which perform so far the best in constructing solutions followed by the Ant-Q 
algorithm which combines ant colony algorithm with the Q learning algorithm, uses the 
synergies of artificial ants. Then there appears the Ant Colony System (ACS), Rank based 
version AS (ASrank) and Max-Min Ant System (MMAS). These three improvements have 
greatly improved the performance of AS, in particular the MMAS gets a lot of expansion 
and becomes an algorithm of highly practical application and one of the best ACO 
algorithms at present. In recent years, there have been some new improvements of ACO  
such as Approximate Nondeterministic Tree Search (ANTS). The ANTS is extended to a 
deterministic algorithm later, and it has a good performance in solving the Quadratic 
Assignment Problem (QAP); Another new improved algorithm is the Hyper-Cube 
Framework for ACO, and its purpose is automatically adjusting the value of pheromone 
trails to ensure that the pheromone trails lie always in the interval [0,1]. The current study 
for ACO has extended from TSP range to many other fields, and it has developed into 
solving the multi-dimensional and dynamic combinatorial optimization problems instead of 
the static one-dimensional optimization problem. The research of ACO has also developed 
from discrete domain into continuous domain. It has got fruitful research results in 
improving the performance of the ACO and grafting on bionic natural evolutionary 
algorithms or local search algorithms. 
This chapter is divided into three parts. In part one, in order to solve the shortcoming of easily 
being trapped in local minimum points, we respectively introduced mutation and simulated 
annealing (SA) algorithm (Kang et al.,1998) to the PSO, and proposed a hybrid algorithm by 
combined with the advantages of the strong global search ability of PSO and good local search 
ability of SA. The hybrid algorithm proposed was applied to solve the Chinese Traveling 
Salesman Problem with 31 cities (C-TSP). The comparative study on the experimental results 
with SA, elementary PSO (Zhong et al., 2007; Xiao et al., 2004; Li et al., 2008) and PSO with 
mutation were given. In part two, the mechanisms and properties of the five ant colony 
algorithms were synthesized, compared and analyzed including basic ant colony algorithm 
(ant system, AS), elitist strategy of ant system (EAS), a new rank-based version of the ant 
system (ASrank), max-min ant system (MMAS) and ant colony system (ACS). The efficiency of 
five algorithms was also compared through their applications in the C-TSP. The investigations 
of the performances were done in the aspects of the effects of different parameters and the 
relations between parameters of the algorithms. The third part is conclusions. 

2. PSO and its application in C-TSP 
2.1 PSO with mutation 
In the PSO, each single solution is a “bird” in the search space. The particles fly through the 
problem space by following the current optimum particles. In every iteration, each particle 



Particle Swarm and Ant Colony Algorithms and Their Applications  
in Chinese Traveling Salesman Problem  

 

299 

is updated by following two “best” values. The first one is the best solution it has achieved 
so far, it is a personal best position denote by ibp . Another “best” value, which is tracked by 
the particle swarm optimizer, is the best value obtained so far by any particle in the 
population, it is a global best position and defined as gbp . All of particles have fitness values 
which are evaluated by the fitness function to be optimized. Each particle updates according 
to those two best values, and then a new generation of population is created.  
Suppose that the searching space is D dimensional with m randomly initialized particles in 
it, the particle swarm can be indicated by following parameters: 1 2( , ,..., )i i i iDx x x x=  stands 
for the location of particle i in the D dimensional space and it is also regarded as a potential 
solution, 1 2( , ,..., )i i i iDv v v v=  stands for the flight velocity of particle i in the D dimensional 
space, 1 2( , ,..., )i i i iDp p p p=  stands for the personal best position of particle i, 

1 2( , ,..., )i g g gDp p p p=  stands for the global best position in the whole swarm. The particle 
updates its velocity and position with the following rules: 

  1
1 2()( ) ()( )k k k k

id id ib ib gb ibv v c rand p x c rand p xω+ = + − + −   (1) 

 1 1k k k
ib ib ibx x v+ += +   (2) 

in which, i = 1 ,2 …,m;  d = 1 ,2 ,…,D;  k is iteration number; c1, c2 are called acceleration 
coefficients, which are used to adjust the maximum flight step of personal best value and 
global best value, rand() returns a random number between (0,1); ω is inertia weight which 
affects the balance of global search ability and local search ability.  
In Zhong et al. in 2007 a large number of experiments proved that once ω  decreases linearly 
with the iteration, the convergence of algorithm would be significantly improved. Therefore 

here we let max min
max

( ) * k
K

ω ωω ω −
= − , where k is the current iteration number, K is the 

maximum iteration number, maxω is the maximum inertia weight, minω  is the minimum 
inertia weight. The basic principles of Eq. (1) is that the velocity achieves information from 
the original velocity, personal best value and global best value, the number of information 
depends onω , c1 and c2. The first part of Eq. (1) is called memory term, which denotes the 
impact of velocity and direction of previous iteration. The second part (the distance between 
current position of particle i and the personal best position) is called self-awareness term, 
which denotes the information that comes from its own experience. The third part (the 
distance between current position of particle i and the global best position) is called 
population-awareness term, which denotes the information that comes from another particles 
of the whole swarm, which reflects the knowledge sharing and cooperation. The PSO 
algorithm can be implemented in the following 6 steps: 
Step 1. Initialize generation and all particles, viz. set the initial position X of each particle 

and the initial velocity V randomly.  
Step 2. For each particle, calculate the fitness value. 
Step 3. For each particle, if the fitness value is better than the best fitness value ( )ibf p  in 

history, set current value as the new ibp . 
Step 4. Choose the particle with the best fitness value of all the particles as gbp . 
Step 5. For each particle, calculate the particle velocity according to Eq. (1), and update 

particle position according to Eq. (2). 
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Step 6. If the maximum iteration or the minimum error criteria is not attained, return to 
Step 2; otherwise end the iteration. 

The PSO has been successfully applied in many continuous optimization problems. The 
Traveling Salesman Problem (TSP) is a typical discrete combinatorial problem. If one wants 
to solve the TSP with PSO, some improvements of basic PSO must be done. In Huang et al., 
in 2003 the concept of swap operator and swap sequence were introduced for solving the 
TSP. Suppose that the solution sequence of the TSP with n nodes is ( ), 1,..., .iS a i n= =  The 
definition of swap operator 1 2( , )SO i i  is the points 

1ia and
2ia in the solution sequence S. Swap 

sequence is an orderly sequence with one or more swap operators, meanwhile the order 
between swap operators is meaningful. Different swap sequence operate on the same 
solution may generate the same new solutions, the equivalent set of swap sequence is the set 
of swap sequence which has the same effect. Among all the equivalent sets of swap 
sequence, the swap sequence with least swap operators is called basic swap sequence. An 
array with N cities denotes the particle’s position X, All the possible arrays compose the 
state space of the problem. Based on vectors, functions and operations defined above, the 
traditional updating equations will be changed in the following versions (Huang et al., 
2003): 

 1 ( ) ( )k k
id id id id gd idv v P X P Xω α β+ = ⊕ − ⊕ −   (3) 

 1 1k k k
ib ib ibx x v+ += +   (4) 

in which, , ( , ) [0,1]α β α β ∈  are random numbers. ( )id idP Xα −  denotes that all the swap 
operators in the basic swap sequence ( )id idP X−  are reserved with a probability of α , 
similarly, ( )gd idP Xβ −  denotes that all the swap operators in the basic swap sequence 
( )gd idP X−  are reserved with a probability of β . Thus the greater the value of α  is, the 
more swap operators that ( )id idP X−  will be reserved, and the greater the impact of idP  is. 
Similarly, the greater the value of β is, the more swap operators that ( )gd idP X−  will reserve, 
and the greater the impact of gdP is. The definition of operator “⊕ ” is the merger operator 
of two swap sequences. Operator “+” denotes the implementation of swap operation, 
operator “-” denotes to obtain the basic swap sequence of two sequences. For example：A = 
(1 2 3 4 5), B = (2 3 1 5 4), as can be seen that A(1) = B(3) = 1, so the first swap operator is 
SO(1,3), B1 = B + SO (1,3), so one gets that B1: (1 3 2 5 4), A(2) = B1(3) = 1, so the second 
swap operator is SO(2,3), B = B1 + SO(2,3), so one gets that B2: (1 2 3 5 4). Similarly, the third 
swap operator is SO(4,5), B3 = B2 + SO(4,5) = A, thus one gets a basic swap sequence: SS = A 
– B  = (SO(1,3), SO(2,3), SO(4,5)). 
The steps of the PSO algorithm for solving the TSP can be described as follows: 
Step 1. Initialize generation and all the particles, set each particle a random initial solution 

and a random swap sequence.  
Step 2. If the maximum iteration or the minimum error criteria is met, turn to Step 5. 
Step 3. According to the particle’s current position k

idX , calculate the next position 1k
idX
+ , 

namely the new solution. 
1. Calculate the difference between idP and idX , id idA P X= − , in which A is a basic 

swap sequence. 
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2. Calculate the difference between gdP  and idX , gd idB P X= − , in which B is a 
basic swap sequence. 

3. Calculate the velocity 1k
idv
+ according to Eq. (3), and convert the swap 

sequence 1k
idv
+  to a basic swap sequence. 

4. Calculate the new solution 1k
ibx
+  according to Eq. (4). 

5. If 1k
ibx
+  is better than idP , set a new solution 1k

ibx
+  as new idP . 

Step 4. Choose the particle with the best fitness value of all the particles as gdP , turn to Step 
2. 

Step 5. Show the result that obtained. 
In the settlement of solving TSP, basic PSO generates new individual through Eq. (3) and 
Eq.(4), from which one can see that a basic swap sequence generated by Eq. (3) is in fact 
equivalent to the swap operator to a route, but the route between the two swap cities do not 
change, so it is easy to generate cross route which is illegal solution. To deal with the 
problem, inspired by the mutation operator in evolutionary algorithm, we add the mutation 
operator to the PSO. The specific approach is: after generating a new route by basic PSO 
approach during each iteration one does the mutation operator to the new route. More 
specific, change Step 4 as follows: 
Step 4:   Generate two mutate cities randomly, then reverse the order of all the cities between 

two mutate cities. If the length of new route is less than the original route, set the 
new route as 1k

ibx
+ . Otherwise, maintain the original route unchanged. 

2.2 A hybrid algorithm of PSO and SA 
The SA algorithm derived from the principle of solid annealing. Firstly, heat the solid to a 
sufficiently high temperature, and then cool it slowly. This process is based on an analogy 
from thermodynamics where a system is slowly cooled in order to achieve its lowest energy 
state. According to Metropolis criteria, the probability of particles balance at temperature T 
is /( )E kTe−Δ , where E is the internal energy at temperature T; EΔ is the increment of internal 
energy; k is the Boltzmann constant. Once one converts the internal energy E to the objective 
function value, and the temperature  T  to control parameter t, the SA algorithm of solving 
combinatorial optimization problems may be obtained with the initial solution i and initial 
control parameter t by repeating the iteration of “generate new solution→ calculate the 
difference of objective function→ accept or discard” to the current solution, and gradually 
reduce the value of control parameter t. The current solution is the approximate to the 
optimal solution when algorithm is terminated. It is a stochastic heuristic search process 
based on Monte Carlo iterative method. The process is controlled by Cooling Schedule, which 
includes initial control parameter t, attenuation factor tΔ , iteration number for each t and 
the termination condition . 
The SA algorithm used to solve the TSP can be described as follows: 
1. Solution spaces：Solution spaces are all the routes of visiting each city once. The solution 

can be denoted as 1 2{ }nω ω ω， ，. . . . 1ω , … , nω  in an array that is composed of 1 to n, 
which denotes one walks to start from the city 1ω , and visits along with the cities 

2ω ,…, nω  orderly, then returns to the city 1ω . 
2. Objective function: Objective function is the total distance length of the route pass 

through all the cities. The objective function value of the optimal route is the least one. 
Objective function is also called fitness function. 
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3. Criteria of new solution generation and acceptance: Here we use reverse operator to 
generate new solution, more specifically, choose two different number k and m between 
1 to n randomly, moreover, k is smaller than m, then one swaps the cities between k to 
m, that is to convert 1 2 , 1 ,{ ,..., ..., }k k m nω ω ω ω ω ω+， ，. . .  into 

1 2 , 1 1, ,{ ,..., ..., }m m k k nω ω ω ω ω ω ω+ +， ，. . . . Once the new route is generated, calculate the 
difference of distance length between new route and current route, if the length of new 
route is smaller, that is, ( ) ( ) 0j if f x f xΔ = − ≤ , set the new route as 1k

ibx
+ , if the length of 

new route is bigger, but exp( / ) (0,1)f t random−Δ > , still set the new route as 1k
ibx
+ , 

otherwise maintain the current route unchanged. 
The SA algorithm in hybrid algorithm of PSO and SA proposed calculates alternately by two 
steps:  
1. Generate a new solution by stochastic perturbation and calculate the change of the 

objective function.  
2. Decide whether the new solution is accepted or not. In the case at a high temperature, 

the solution that increases the objective function may be accepted by means of 
decreasing the temperature slowly, which may avoid to trap in local minima. In such a 
way the algorithm can converge to the global best solution. 

The nature of basic PSO is the use of individual and global maximum to guide the position 
of the next iteration, which can converge fast at the early iteration. But, after several 
iterations current solution, personal best value and global best value tend to the same, 
which leads to the loss of population diversity, and makes the solution be trapped in local 
minima. In order to avoid this phenomenon, inspired by the SA algorithm, we redesign the 
algorithm’s framework: when basic PSO converges to a solution gp , use the solution gp  as 
the initial solution of SA, accept the new solution in accordance with the Metropolis criteria. 
If there is such a solution y satisfies ( ) ( )gf y f p< , that is, the solution calculated by basic 
PSO is not the global optimal solution. Then a new solution y can be used to randomly 
replace a particle in the swarm, and the evolution of PSO continues, which can increase the 
population diversity as well as retain the previous operation procedure. If there is not such a 
solution y, then let ( ) ( )gf y f p< , that is, no better solution than gp  has been found until the 
convergence of SA, which indicates that gp is the global optimal solution. 

2.3 The C-TSP application and results analysis 
The TSP is a well-known combinatorial optimization problem with typical NP-hard and is 
often used to verify the superiority of some intelligent heuristic algorithm. The 
mathematical description of the TSP is: Given a list of n cities in order of visiting as 

1 2{ , ,..., }nX x x x=  and 1 1nx x+ = , the task is to find the shortest possible tour distance of 

1
1,

min
i i

n

x x
i x

d
+

= ∈Ω
∑ that visits each city exactly once. The TSP can be modeled as a graph: the 

graph’s vertices correspond to cities and the graph’s edges correspond to connections 
between cities, the length of an edge is the corresponding connection’s distance. A TSP tour 
is now a Hamiltonian cycle in the graph, and an optimal TSP tour is the shortest 
Hamiltonian cycle. 
Chinese Traveling Salesman Problem (C-TSP) is a typical symmetric TSP problem. Its simple 
description is: Given a list of 31 Chinese capital cities and their pairwise distances, the task is 
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to find the shortest possible tour that visits each city exactly once. The C-TSP is a medium-
scale TSP problem, which has 32(31 1)!/ 2 1.326 *10− =  possible routes. 
The algorithms of solving TSP problem are divided into two categories: Exact algorithms 
and approximation algorithms. The exact algorithms used frequently includes branch and 
bound algorithms, linear programming and exhaustion method, etc.. The running time for 
this approach lies within a polynomial factor of O(n!), the factorial of the number of cities, so 
this solution becomes impractical even for only 20 cities. Approximation algorithm is 
divided into tour route construction algorithm, tour route optimization algorithm and 
heuristic algorithm, in which heuristic algorithm is the most spectacular including genetic 
algorithm, ant colony algorithm, particle swarm optimization, simulated annealing, 
differential evolution, etc.. Currently, to C-TSP problem, simulated annealing, improved 
genetic algorithm, differential evolution all achieve the optimal solution of 15404 km. The SA 
has the advantages of high, quality, robust, easy to achieve but with slow convergence. 
The hybrid algorithm proposed is applied into the C-TSP. At the same time, basic PSO, SA 
and PSO with mutation are also applied to do the comparisons. The programming language 
is Matlab 7.0, and it runs on Win XP with Intel Core2 Duo 2.10 GHz CPU. We use the 
discrete PSO (DPSO) that proposed by Huang et al. in 2003 as the basic PSO, parameter 
settings are as follows: Particle number m = 200, maximum inertia weight maxw = 0.99, 
minimum inertia weight minw = 0.09, acceleration coefficient c1 = 0.8, c2 = 0.4, iteration 
number k = 2000. The parameters of mutation in the PSO are the same as in DPSO. The 
parameter settings of SA are as follows: Initial temperature 0T = 5000, termination 
temperature fT  = 1, cycle constant L = 31000, attenuation factor α  = 0.99. The parameter 
settings of the hybrid algorithm are as follows：Particle number m = 200, maximum inertia 
weight maxw = 0.99, minimum inertia weight minw  = 0.09, acceleration coefficients c1 = 0.8, c2 
= 0.4, initial temperature 0T = 5000, termination temperature fT  = 1, cycle constant L = 
31000, attenuation factor α  = 0.95. Each algorithm has been run for 20 times, the numerical 
results of four algorithms are listed in Table 1, in which “Worst” denotes the worst solution 
in 20 runs, “Best” represents the best solution in 20 runs, “Average ” is the average fitness in 
20 runs, “Optimal rate” denotes the rate that gets the times of the optimal solution (15404) 
over 20 times runs.      
One can see from Table 1 that the result obtained by DPSO is not satisfactory. It is unable to 
find the optimal solution of 15404, and its average value of solutions is also away from the 
optimal solution, which is because current solution idX , personal best value ibp  and global 
best value gbp  tend to the same after several iterations. The DPSO is difficult to get new 
effective edge and new effective route, and it is easy to be trapped in local minima. On the 
other hand, the SA, PSO with mutation and the hybrid algorithm can obtain the optimal 
solution. The average and worst distances of hybrid algorithm proposed are 15453.4 and 
15587, respectively, which are the smallest in all those of the four algorithms. The solutions 
obtained by the hybrid algorithm proposed are the best and its optimal solution rate is 20%, 
which is the highest. In order to further compare SA, PSO with mutation and the hybrid 
algorithm, we have studied the three algorithms in the fitness curve when finding the 
optimal solution. The results are shown in Figures 1-3, in which the x axes is the iteration 
number in unite of times, and the y axes is the global best route distance which is just the 
solution of C-TSP. 
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Algorithm Worst Best Average Optimal rate 

DPSO 20152 16665 18035.3 0 

PSO With Mutation 16194 15404 15662.3 0.1 

SA 15606 15404 15467.8 0.15 

Hybrid Algorithm 15587 15404 15453.4 0.2 

Table 1. Experiment Results 
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Fig. 1. The C-TSP optimization procedure of SA       

From Figure 1 it is clear that SA converges to the optimal solution in about 500 iterations. 
Figure 2 indicates that PSO with mutation algorithm has oscillation at the early iteration, 
and it converges to the optimal solution in about 1000 iterations. From Figure 3 one can see 
that the hybrid algorithm converges to the optimal solution in about 100 iterations. The  
 

 
Fig. 2. The C-TSP optimization procedure of PSO with mutation 
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Fig. 3. The C-TSP optimization procedure of hybrid algorithm proposed 
 

0

0

Y

X
1000 2000 3000

-3000

-2000

-1000

 
Fig. 4. Optimal route of C-TSP 

problem of local optimal solution is not only been solved, but also the convergence speed is 
greatly decreased. Figure 4 is the optimal route made by the hybrid algorithm for C-TSP 
problem. The optimal route is: Beijing - Harbin - Changchun - Shenyang - Tianjin - Jinan - 
Hefei - Nanjing - Shanghai - Hangzhou - Taipei - Fuzhou - Nanchang - Wuhan - Changsha - 
Guangzhou - Haikou - Nanning - Guiyang - Kunming - Chengdu - Lhasa - Urumchi - Xining 
- Lanzhou - Yinchuan - Xian - Zhengzhou - Shijiazhuang - Taiyuan - Hohhot – Beijing. The 
total distance length of the optimal route is 15404 km. 

3. Ant colony optimization algorithms and their improvements to the C-TSP 
application 
3.1 Ant colony optimization algorithms 
Artificial ants of the ACO algorithms build solutions by performing random walk which use 
a certain stochastic rules on a completely connected graph ( , )CG C L=  whose nodes are the 
components C, and the set L fully connect the components C. Each connection of the map 
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( , )CG C L=  can be associated pheromone trail ijτ , and heuristic information ijη  (The 
subscripts i and j are labeling of the nodes on the map).  
It is important to note that artificial ants are in parallel movement independently. Although 
each ant is complex enough to find a (probably poor) solution to the problem under 
consideration, good-quality solutions can only emerge as the result of the collective 
interaction among the ants. This collaborative interaction is obtained via indirect 
communication mediated by the information ants read or write in the variables storing 
pheromone trail values. To some extent, this is a distributed learning process in which the 
single ant is not self-adaptive but, on the contrary, it can modify adaptively the way 
represented and perceived by other ants. Informally an ACO algorithm can be imagined as 
the interplay of three procedures (Dorigo & Stützle, 2004): Construction of Ants Solutions, 
Pheromone updating, and Daemon Actions. 
1. Construction of Ants Solutions manages a colony of ants that concurrently and 

asynchronously visit adjacent states of the problem considered by moving through 
neighbor nodes of the problem’s construction graph GC. They move by applying a 
stochastic local decision policy that makes use of pheromone trails and heuristic 
information. In such a way, ants incrementally build solutions of optimization problem. 
Once an ant has built a solution, the ant evaluates the solution that will be used by the 
Pheromone updating procedure to decide how much pheromone to deposit. 

2. Pheromone updating is the procedure in which the pheromone trails are modified. The 
trails’ values move either increase, as ants deposit pheromone on the components or 
connections they use, or decrease due to pheromone evaporation. From a practical point 
of view, the deposit of new pheromone increases the probability whose components/ 
connections are used by either many ants or at least one ant. A very good solution 
produced will be used again in future ants. Differently, pheromone evaporation carries 
out a forgetting factor in order to avoid a too rapid convergence to a sub-optimal 
region, so pheromone evaporation has the advantage of generating new search areas. 

3. Daemon Actions procedure is used to centralize the actions which can not be performed 
by single ants. Examples of daemon actions are the activation of a local optimization 
procedure, or the collection of global information used to decide whether it is useful or 
not to deposit additional pheromone to update the search process. 

These three procedures should interact and take into account the characteristics of the 
problem considered. The TSP can be represented by a complete weighed graph ( , )CG C L=  
with C being the set of nodes representing the cities, and L being the set of arcs. Each arc 
( , )i j L∈  is assigned a value ijd , which is the distance between cities i and j. In the 
symmetric TSP, ij jid d=  holds for all the arcs in L; but in the general case of the asymmetric 
TSP, the distance between a pair of nodes i, j is dependent on the direction of traversing the 
arc, that is, there is at least one arc (i, j) for which ij jid d≠ . More formally, TSP is described 
as: A finite set 1 2{ , , , }NC c c c  of components is given, where N is the number of 
components. Set { | , }ij i jL l c c C= ∈  fully connects the components C. ( , 1,2, )ijd i j n=  is the 
Euclid distance of arc ijl : 

 2 2( ) ( ) , ( , )ij i j i jd x x y y i j L= − + − ∀ ∈   (5) 

In the TSP, ( , )G C L=  is a directed graph and the goal is to find a minimum length 
Hamiltonian circuit of the graph, where a Hamiltonian circuit is a closed path visiting each 
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of the n nodes of G exactly once. In another way, an optimal solution to the TSP is a 
permutation R of the node indices 1 2{ , , , }nc c c  such that the length ( )F R  is minimal, where 

( )F R  is given by 

 
1

( ) ( 1 ) ( ) (1 )
1

( )
n

R i R i R n R
i

F R d d
−

+
=

= +∑  (6) 

The ACO can be applied to the TSP in a straightforward way. The construction graph 
( , )CG C L= , where the set L fully connects the components C, is identical to the problem 

graph; the set of states of the problem corresponds to the set of all possible partial tours; and 
the constraints Ω enforce that the ants construct only feasible tours that correspond to 
permutations of the city indexes. In all available ACO algorithms for the TSP, the 
pheromone trails are associated with arcs, so the ijτ  refers to the desirability of visiting city j 
directly after city i. The heuristic information is chosen as 1 /ij ijdη =  thus the heuristic 
desirability of going from city i directly to city j is inversely proportional to the distance 
between the two cities. If there is the length of arc (i, j) equal to 0, then put the ijη  set to a 
very small value. For implementation purposes, pheromone trails are usually collected into 
a pheromone matrix whose elements are the arcs’ pheromone trails. This can be done 
analogously for the heuristic information. Tours are constructed by applying the following 
simple construction procedure to each ant (Dorigo & Stützle, 2004): (1) choose a initial city 
according to some criterion. (2) make use of pheromone and heuristic values to 
probabilistically construct a tour by iteratively adding cities, to which the ant has not visited 
yet, until all cities have been visited; (3) go back to the initial city. After all ants have 
completed their tours, they may deposit pheromone on the tours they have followed. 
Sometimes, adding Daemon Actions such as the local search will improve the performance 
of algorithm.   

3.2 Ant System (AS) 
Ant System is created by Marco Dorigo and others in 1991 (Dorigo & Stützle, 2004; Dorido et 
al., 1991; Colorini et al., 1992; Dorigo 1992), and it is the first algorithm which is in line with 
the ACO algorithm framework. Initially three different versions of AS were proposed which 
are called ant-density, ant-quantity, and ant-cycle. These three versions are different on 
pheromone updating. Whereas in the ant-density and ant–quantity versions the ants update 
the pheromone directly after a move from one city to an adjacent city. In the ant-cycle 
version the pheromone deposited by each ant is set to be a function of the tour quality. The 
version of ant-cycle considers the quality of complete solution and uses pheromone 
updating method which has overall mechanism. Ant-cycle is better than the other two 
versions which just consider the single-step path information. Nowadays, when referring to 
AS, one actually refers to ant-cycle (AS described in this chapter also refers the ant-cycle 
version). The principle of AS is introduced as follows. 

3.2.1 Tour construction 
In AS, m artificial ants concurrently build a tour of the TSP. First, the m ants are put on 
randomly n chosen cities, which is also known as the scale of the problem. At each 
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construction step, ant k applies a probabilistic action choice rule to decide which city to visit 
next. Evidently the next visit city j must be in the feasible neighborhood of ant k. Due to visit 
each city only once, so this neighborhood structure k

iN  is restricted by kM which is used to 
store information of ant k about the path it followed so far. The following is the path chosen 
by the probability formula: 

 
, if ;

0 , otherwise ;
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  (7) 

By this probabilistic rule, the probability of choosing a particular arc(i, j) increases with the 
value of the associated pheromone trail ijτ  and of the heuristic information value ijη . The 
heuristic information value 1 /ij ijdη =  represents a pre-given inspiration information which 
describes the objective conditions of the path  outside. Pheromone trail ijτ  is the key factor 
in the tour construction and it represents experience which comes from the previous 
generation. Last,  and β are two parameters which determine the relative influence of the 
pheromone trail and the heuristic information. Each ant k has a memory storage kM  and it 
records in accordance with the order in which they visit all the cities visited. This kM  is 
used to define the feasible neighborhood k

iN in the construction rule. In addition, the 
memory kM allows ant k both to compute the length of the tour kT  it generated and to 
retrace the path to deposit pheromone. Although the solution of the whole construction is 
parallel, there are two different ways of implementing it: parallel and sequential solution 
construction. In the parallel implementation, at each construction step all the ants move 
from their current city to the next one, while in the sequential implementation an ant builds 
a complete tour before the next one starts to build another one. These two methods are 
equivalent in AS, because the pheromones are released only after m ants constructing a 
complete solution, they do not significantly influence the algorithm’s behavior. However, in 
every step of ants moving if the local pheromone updating is added, then the effect of these 
two methods is different, such as ACS. 

3.2.2 Pheromone trails updating 
After all the m ants have constructed their tours, the pheromone trails are updated. First step 
is pheromone evaporation, and each edge of the pheromone is to evaporate according to 
pheromone evaporation rate ρ. Pheromone evaporation is implemented by 

 (1 ) * , ( , )ij ij i j Lτ ρ τ← − ∀ ∈   (8) 

The parameter ρ ( 0 1ρ≤ ≤ ), which represents the pheromone evaporation rate, is used to 
avoid unlimited accumulation of the pheromone trails and it enables the algorithm to forget 
bad decisions previously taken. Actually if an arc is not chosen by the m ants then its 
associated pheromone value decreases exponentially in the number of iterations. 
After pheromone evaporation, all the m ants deposit pheromone on the arcs they have 
crossed in their tours: 
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where k
ijτΔ  is the amount of pheromone ant k deposits on the arcs it has visited. It is defined 

as: 
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where kC , the length of the tour kT built by the k-th ant, is computed as the sum of the 
lengths of the arcs belonging to kT . By means of Eq. (10), the better an ant’s solution is, the 
more pheromone the arcs belonging to this tour receive. This ensures the probability of 
choosing good path.  

3.3 Elitist Ant System (EAS) 
Elitist Ant System is the first improvement on the initial AS, which is called elitist strategy 
for Ant system (EAS) (Dorigo & Stützle, 2004; Dorido et al., 1991; Colorini et al., 1992; 
Dorigo, 1992). EAS gives the ant which has constructed so far the best path solution the elite 
logo, sets the so far the best path bsT , and provides strong additional reinforcement to the 
arcs that is belong to the best tour  bsT found since the start of the algorithm. 
In tour construction, the methods in EAS is the same as the methods in AS. In pheromone 
updating, the pheromone evaporation formula is the same as (3.4).The additional 
reinforcement of tour bsT is achieved by adding a quantity / bse C  to its arcs, where e is a 
parameter that defines the weight given to the best-so-far tour bsT , and bsC is its length. The 
following is the equation for the pheromone deposit: 
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where k
ijτΔ  is defined as in Eq. (10) in AS and bs

ijτΔ  is defined as follows: 
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The key is that the EAS has adopted a daemon action, which is the additional incentive of 
the elite ants. Although this operation belongs to the pheromone updating steps, it is a kind 
of additional guidance to the overall operation. One can image like this: After all the ants 
including the elite ant depositing pheromone on the arcs they have crossed over their tour, 
the elite ant give the bsT additional release of pheromones. 
Compared with EAS, the pheromone updating mechanism in the AS is weak indeed. 
Sometimes, the optimal path may be with a very small difference between the paths which 
are not so satisfactory, and the mechanism in the AS can not make a good distinction 
between them. This is because of the simple form of the pheromone depositing formula 
which allows all ants use the same weight for depositing pheromone. Usually, the level for 
the algorithm to explore the overall optimal solution is not enough. The EAS with the 
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parameter e determining the weight gives the best-so-far tour, that is, the best-so-far solution 
has been improved in the course of the search status, and the algorithm attempts to search a 
better solution which around the best-so-far solution. From the other side of the coin, the 
EAS concentrates a smaller search space which is compressed from original search space. 
Such a smaller search space may have better solutions. The mechanism increases the 
probability for finding overall optimal solution, and at the same time it also speeds up the 
convergence. Experiments later in this chapter show that parameter e needs to be selected 
with a reasonable value: an appropriate value for parameter e allows EAS to both find better 
tours and have a lower number of iterations. If parameter e is too small, the elitist strategy 
will not have much effect because of the low discrimination for better ants, while if the 
parameter e is too large, the algorithm will be too dependent on the initial best-so-far tour, 
and have rapid convergence to a small number of local optimal solutions, which weaken 
algorithm’s ability of exploration. 

3.4 Rank-Based Ant System (ASrank) 
Another improvement over AS is the rank-based version of AS (Dorigo & Stützle, 2004; 
Bullnheimer et al., 1997): ASrank.  In ASrank, before updating the pheromone trails, the ants are 
sorted by increasing tour length and the quantity of pheromone deposited by an ant is 
weighted according to the rank of the ant. Usually in each iteration, only the (w-1) best 
ranked ants and the ant produced the best-so-far tour (this ant is not necessarily is belong to 
the set of ants of the current algorithm iteration) are allowed to deposit pheromone. The 
best-so-far tour gives the strongest feedback, with weight w; the r-th best ant in the current 
iteration contributes the pheromone updating with the value 1/ rC  multiplied by a weight 
given by max {0, w-r}. 
In tour construction, the methods in ASrank are the same as the methods in AS. In 
pheromone updating, the pheromone evaporation formula is the same as in Eq. (8). The 
ASrank pheromone update rule is: 
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where 1 /r r
ij CτΔ = and 1/bs bs

ij CτΔ = ; rC  is the length of r-th solution and bsC  is the same as 
in Eq. (12)  
Compared with AS the ASrank selects w ants to deposit pheromone according to the rank of 
solutions’ quality, which is a new improved formula. It completely abolishes the national 
pheromone deposit mechanism, in other word, only the ant who has constructed a good 
enough solution can deposit pheromone and the amount of pheromone to deposit is 
decided by the rank. It can reduce the operation of the pheromone and get rid of bad 
solutions directly. The pheromone depositing mechanism in ASrank is a group of elite ants 
award, and it is better than the mechanism in AS which just depends on the reciprocal of the 
tours. Totally, the performance of ASrank is much better than AS. 
ASrank and EAS are different on the reward strategy of elitist ants. EAS just give the best-so-
far solution an additional incentive, although it can find the good solutions, indirectly it is 
greatly weakened or even abandoned the second-best-so-far solutions whose neighborhood 
may have better solutions. In ASrank, the algorithm gives a group of elitist ants award, but the 
award is according to the rank of solutions. On the one hand the mechanism takes into 
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account the importance of the best-so-far solution, which ensures that the experience of the 
leading elitist ant is retained; on the other hand it considers the neighborhood of sub-
optimal solutions, that is, it increases ability to explore the optimal solution. 

3.5 MAX-MIN Ant System (MMAS) 
Max-Min Ant System is a constructive amendment to AS (Dorigo & Stützle, 2004; Stützle & 
Hoos, 1996; Stützle & Hoos, 1997; Stützle & Hoos, 2000). It is one of the best ACO 
algorithms. There are four main modifications with respect to AS: 
1. It strongly exploits the best tours found: only either the iteration-best ant, that is, the ant 

produced the best tour in the current iteration, or the best-so-far ant is allowed to 
deposit pheromone. 

2. It limits the possible range of pheromone trail values in the interval min max[ , ]τ τ . 
3. The pheromone trails are initialized to the upper pheromone trail limit together with a 

small pheromone evaporation rate. 
4. Pheromone trails are reinitialized when the system approaches are stagnated or when 

no improved tour has been generated for a certain number of consecutive iterations. 
The first point strongly exploits the best tours found, but may lead to a stagnation situation 
in which all the ants follow the same tour. To increase the effect, the second modification is 
introduced by MMAS. It makes that the pheromone in each arc does not accumulate too 
large or consume too small, so that it could ensure the sustainability of exploration. The 
third point makes MMAS have a stronger ability to explore at the initial stage. The fourth 
point introduces a new mechanism which can be applied to all the ACO algorithms, that is, 
through the resumption of initial pheromone and re-search thus it increases the possibility 
of finding the optimal solution. 
Since only the optimal solution is allowed to deposit pheromones, the formula about 
pheromones depositing is very concise:  

 , ( , )best
ij ij ij i j Lτ τ τ← + Δ ∀ ∈   (14) 

where 1/best best
ij CτΔ = . bestC is the length of optimal tour. It can be the best-so-far tour or 

iteration-best tour. 
In general, in MMAS implementations both the iteration-best and the best-so-far updating 
rules are used, in an alternate way. Obviously, the choice of the relative frequency with 
which the two pheromone updating rules are applied has an influence on how greedy the 
search is: When pheromone updating is always performed by the best-so-far ant, the search 
focuses very quickly around the best-so-far solution, whereas when it is the iteration-best 
ant that updates pheromones, the number of arcs received pheromone is larger and the 
search is less directed. 
In MMAS, there are two default daemon actions. One is the pheromone trails limits, the 
other one is the pheromone trails re-initialization. In MMAS, lower and upper limits minτ  
and maxτ  on the possible pheromone values of any arc are imposed in order to limit the 
probability ijp  of selecting a city j when an ant is in city i in the interval min max[ , ]P P , so that it 
could avoid searching stagnation and enhance the ability to explore. In the long run, the 
upper pheromone trail limit on any arc is bounded by *1 / Cρ , where *C  is the length of the 
optimal tour. Based on this result, MMAS uses an estimate of this value of 1/ bsCρ , to define 
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maxτ : each time a new best-so-far tour is found, the value of maxτ  is updated. The lower 
pheromone trail limit is set to min max / aτ τ= , where a is a parameter which decides the 
proportion of upper limit and lower limit. In MMAS, in order to avoid stagnation, the lower 
pheromone trail limits play a more important role than upper limits. Pheromone trail re-
initialization is typically triggered when the algorithm approaches the stagnation behavior 
or if no improved tour of a given number of algorithm iterations is found. It can increase the 
exploration of paths that have only a small probability of being chosen. By the way, the 
pheromone trail re-initialization also increases the probability of finding the global optimal 
solution (equivalent to cumulative probability). 

3.6 Ant Colony System (ACS) 
Ant Colony System (ACS) is an extension of AS (Dorigo & Stützle, 2004; Dorigo & 
Gambardella, 1997). The ACS exploits the search experience accumulated by the ants more 
strongly than AS. The rule is called pseudorandom proportional rule. When located at city i, 
ant k moves to a city j, the rule is given by  
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where q is a random variable uniformly distributed in [0,1] , J is a random variable selected 
according to the probability distribution given by Eq.(5) with α = 1. 0 0(0 1)q q≤ ≤ is a 
parameter with which the ant makes the best possible move as indicated by the learned 
pheromone trails from the heuristic information, while with probability 0(1 )q−  it performs 
a biased exploration of the arcs. 
This pseudorandom proportional has strong artificial operability because the parameters q0 

can be set to guide the algorithm’s preference. By tuning the parameter q0, it is allowed to 
modify the degree of exploration and to select whether to concentrate the search of the 
system around the best-so-far solution or to explore other tours. 
In ACS only the best-so-far ant is allowed to update pheromone after each iteration  
including the pheromone deposit and pheromone evaporation. In each time an ant uses an 
arc to move from city i to city j, which is called the local pheromone updating to remove 
some pheromone from the arc to increase the exploration of alternative paths. The global 
pheromone trail updating is described as the following equation: 

 (1 ) , ( , )bs bs
ij ij ij i j Tτ ρ τ ρ τ← − + Δ ∀ ∈   (16) 

where 1 /bs bs
ij CτΔ = . bsC is the length of the best-so-far tour bsT . It is worth to note that the 

deposited pheromone is discounted by a factor ρ, which results in the new pheromone trail 
becoming a weighted average between the old pheromone value and the amount of 
pheromone deposited.  
The local pheromone trail updating is described as the following equation: 

 0(1 ) , ( , )ij ij i j Lτ ε τ ετ← − + ∀ ∈   (17) 
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where ε, 0 1ε≤ ≤ , ε  is the local pheromone evaporation rate and the 0τ is the initial 
pheromone. The effect of the local updating rule is to reduce pheromone trail of an ant in 
some arc so that the arc becomes less desirable for the following ants. The role of local 
updating is to strengthen the capacity of artificial ant exploration. 

3.7 Application of five ACO algorithms in C-TSP and results analysis 
In order to demonstrate and verify the properties of five ACO algorithms mentioned above, 
in this section, we’ll apply them in the Chinese TSP with 31 capital cities, and compare their 
advantages and disadvantages in the medium-scale discrete optimization problem.   
The important parameters of Ant System are as follows. N: the number of cities; m: the 
number of artificial ants; α: the parameter that controls the relative importance of 
pheromone trail; β: the parameter that controls the relative importance of heuristic 
information; ρ: pheromone evaporation rate; q: a constant represents the weight of the 
deposited pheromone; 0τ : initial pheromone trail; NC: preset number of iterations. In 
addition, in its improved algorithms the addition parameters are as follows. The e in EAS : a 
parameter that defines the weight given to the best-so-far tour. The w in ASrank: the number 
of the artificial ants who are allowed to add pheromone. The τ_proportion, τ_max, τ_min and 
nowbest_p in MMAS: τ_proportion is a parameter which decides the proportion of upper limit 
and lower limit; τ_max is the upper limit of pheromone; τ_min is the lower limit of 
pheromone; nowbest_p is the frequency of selecting best-so-far tours rule of depositing 
pheromone. The pbest and local_p in ACS: pbest is a probability of choosing right path; local_p 
is the local pheromone evaporation rate.  
A candidate list is first built to restrict the number of available choices considered at each 
construction step. In general, candidate lists contain a number of the best rated choices 
according to some heuristic criterion. First, configure for each city a nearest neighbor list 
which records the other cities sorted in ascending order by distance; Second, build the 
candidate lists for each city and set the parameter (0 )nn nn n≤ ≤  which decides the number 
of the nearest neighbors needed; Last, get the cities which are previous nn cities in the 
nearest neighbor list into the candidate list for each city. When an ant constructs solution, it 
gives priority to the candidate list of cities. In fact, the ant usually considers from the first 
city in the candidate lists that has not been visited and selects with random probability rule. 
When all the cities in the candidate list have been visited by an ant, the ant will consider 
other cities and select the city which has a maximum value of [ ] [ ]ij ij

α βτ η , that is, the ant 

selects the city which is the best experience-oriented one. Set the parameter nn to a constant 
which is below the number of cities n, especially for a small value, the algorithm’s speed will 
be improved significantly. The mechanism is feasible, because in TSP a good path can not 
appear a city i connects another city j which has a long distances from city i. In other words, 
the ant in city i should choose the city j which nears the city i. It is worth to note that the 
parameter nn is important for candidate list. If the value of nn is too large, the effect of 
speeding up algorithm will be weakened. On the other hand, a too small nn will make the 
performance of algorithm very poor. However, it should be noted that the use of truncated 
nearest-neighbor lists can make it impossible to find the global optimal solution. The global 
optimal solution does not mean to be the combination of cities in the candidate lists. Perhaps 
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in order to achieve the best, ants in some cities should choose far way cities to go and these 
cities are not in departure cities’ candidate lists. 
The steps of Ant System (AS) algorithm is as follows (in the case no candidate lists): 
Step 1. Enter an actual TSP, get the scale n of the problem, and transform the instance into 

a symmetric distance matrix distance (set the diagonal elements with small values 
to prevent the situation of NAN.) 

Step 2. Initialize all the parameters, including m, α, β, ρ, q, 0τ and NC. Set the iteration 
number to 0. 

Step 3. Initialize storage variable including best-so-far solution nowbest_opt = 2 * vicinity 
(vicinity is the solution comes form the nearest algorithm), best-so-far path 
nowbest_path = zeros (1, n), pheromone tails matrix τ = ones(n) * 0τ , and the matrix 
which describes the importance of  heuristic information βτ = dist.^(- β). 

Step 4. Begin to circulate, and set the iteration number nc = nc +1. 
Step 5. The starting cities of ants are randomly distributed as begin_city = randperm (n); 

initialize tabu list tabu = ones (m, n) and taboo the starting city; initialize path matrix 
path = zeros (m, n) and add the starting city into the first column; build the matrix 
that describes the importance of pheromone ατ = τ.^ α; build the comprehensive 
weight matrix .*d α βτ τ τ= . 

Step 6. Ant walking steps step=step+1 (initialize step = 0，and 1step n≤ − ). 
Step 7. Artificial ants’ label k = k +1 (initialize k = 0, and k m≤ ) 
Step 8. Choose the next city in accordance with the probability formula, taboo the selected 

city in the ant taboo list tabu (k, :), and add this chosen city into the ant path 
sequence path (k, step +1). 

Step 9. If k < m, then turn to step 7; otherwise turn to step 10. 
Step 10. If 1step n≤ − , then turn to step 6; otherwise turn to step 11. 
Step 11. According to the pheromone updating formula of AS, update the pheromone trails 

τ, and update the optimal solution as best-so-far solution nowbest_opt and the 
optimal path as best-so-far tour nowbest_path which includes the cities of the best-
so-far tour.  

Step 12. If the iteration number nc < NC, then turn to step 4; otherwise end the operation, 
export the data and image results. 

Remark: The steps described above are just the AS algorithm. The improved algorithms 
mentioned above should have some changes, which are mainly in the steps of the parameter 
settings, constructing solutions and pheromone updating. In the process of building a 
solution, they use parallel mechanism. To add the candidate lists to the algorithm, first of all 
one needs to add a step in one of the first two steps in the algorithm: list the neighbor cities 
in ascending order by distance and configure nearest neighbor list for each city, set the 
parameter Neighbor_num of the candidate list, and then get the candidate list Neighbor_list 
from the nearest neighbor list; followed by modifying the step 8: first of all, begin to 
consider the first city in the candidate list that does not be visited, and select the target city 
of the next step with probability rules. When the cities of the candidate list have all been 
visited one compares the values .*d α βτ τ τ=  of all the other remaining cities, and select the 

largest one as the next target city; taboo the selected city in the ant taboo list tabu (k,:), and 
add this city into the ant path sequence path (k, step +1). 
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Table 2 is the summary of the experimental results of the five ACO algorithms including 
adding the mechanism of the candidate list and pheromone re-initialization, etc.. Each 
system runs for 100 times. In Table 2, the algorithm with "_C" has the mechanism of 
candidate list, the algorithm with “_R” has the mechanism of pheromone re-initialization, 
Best or Worst mean the best or worst solution of the 100 solutions. “Opt. rate” is the rate of 
global optimal solution, Average is the average solution of all solutions. “Average converg.” 
is the average convergence iteration number, and Average time is the average time in 100 
running solutions. Relative error is described as follows: 

 | average solution - global optimal solution |relative error =
global optimal solution

  (18) 

 

where the global optimal solution = 15404, and the average solution is the average solution in  
100 running solutions.  
 

Algorithm Best Worst Opt. 
rate Average Relative 

error 
Average 
converg.

Itera. 
No. 

Average 
time 

AS 15420 15669 0 15569.05 1.071% 1405.95 3000 12.221 

AS_C 15420 15620 0 15548.3 0.937% 1380.11 3000 6.044 

EAS 15404 15625 48% 15447.4 0.282% 1620.48 4000 16.409 

EAS_C 15404 15593 52% 15437.62 0.218% 1606.95 4000 7.954 

ASrank 15404 15593 63% 15413.74 0.063% 1857.19 4000 16.662 

ASrank_C 15404 15520 65% 15408.05 0.026% 1747.07 4000 8.349 

MMAS 15404 15593 55% 15428.54 0.159% 2371.96 5000 20.386 

MMAS_C 15404 15593 57% 15424.32 0.132% 2166.56 5000 10.384 

MMAS_R 15404 15593 68% 15418.48 0.094% 2984.5 8000 23.951 

MMAS_C_R 15404 15520 73% 15418.75 0.096% 2655.68 8000 10.799 

ACS 15404 15779 40% 15442.42 0.249% 2889.67 10000 5.546 

ACS_C 15404 15745 40% 15445.51 0.269% 2708.9 10000 4.817 

Table 2.  The summary of the test results when ACO algorithms are applied to the C-TSP  

One can obtain from Table 2 the following results: 
1. In the test of all 12 kinds of algorithms, from the column "Best" solutions one can see 

except AS and AS_C which add the mechanism of candidate list to AS, the other 10 
kinds of algorithms can detect the global optimal solution 15404. 

2. Along all the algorithms, from the column "Opt. rate" one can see max-min ant system 
which has the mechanisms of the candidate list and pheromone initialization added in 
MMAS_C_R owns the highest rate of excellent, that is 73%, followed by MMAS_R; 
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Except AS and AS_C, ACS and ACS_C which add the mechanism of candidate list to 
ACS have the worse performance, that is 40%. 

3. Compare these five algorithms without any mechanism, from the "Opt. rate " one can 
also see that rank based version AS, ASrank has the highest rate of excellent, that is 63%, 
followed by MMAS, EAS, ACS, and AS. 

4. Compare these five algorithms without any mechanism to those five algorithms with 
mechanisms of the candidate list respectively, that is, compare XXX with XXX_N, one 
can see from the optimal rate and average running time except ACS and ACS_C are not 
obvious, the mechanism of the candidate list slightly improves the performance of the 
algorithms and greatly reduces the running time. 

5. Compare the four cases of MMAS, that is, MMAS, MMAS_C, MMAS_R and 
MMAS_C_R, one can see from the optimal rate that every mechanism can improve the 
performance of algorithms, and max-min ant system only with the mechanisms of 
pheromone initialization the candidate list has a better performance than only with the 
mechanisms of the candidate list. Of course, max-min ant system with two mechanisms 
at the same time has the best performance. 

4. Conclusions 
This chapter has analyzed the characteristics of the SA and PSO for solving the C-TSP 
problem. Combined the fast convergence speed of PSO with the good local search ability of 
SA, a hybrid algorithm has been proposed. Numerical simulations show that the proposed 
algorithm is more efficient in C-TSP than single PSO and SA, respectively. Generally 
speaking, when ACO algorithms are applied to the TSP instance C-TSP, elitist strategy for 
ant system, rank based version AS, max-min ant system, ant colony system show better 
performance, they have a certain percentage to find the global optimal solution, but ant 
system fails to find global optimal solution. In all these systems, max-min ant system which 
has the mechanisms of the candidate list and pheromone initialization added in shows the 
best performance in the C-TSP. 
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